PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the mass and other parameters of charged particles on the results of laser resonance acceleration

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ masy i innych parametrów naładowanej cząstki na wynik laserowej rezonansowej akceleracji
Języki publikacji
EN
Abstrakty
EN
Theoretical and numerical analyses are presented concerning the conditions at which the charged particles of different masses can be accelerated to significant kinetic energy in the circularly polarized laser or maser beams and a static magnetic field. The studies are carried out using the analytical derivations of the particles dynamics and theirs kinetic energy. The presented illustrations enabled interpretation of the complex motion of particles and the possibilities of their acceleration. At the examples of an electron, proton and deuteron, the velocity, kinetic energy and trajectory as a function of the acceleration time at the resonance condition are illustrated in the appropriate graphs. The particles with larger masses require the application of enhanced magnetic field intensity at the resonance condition. However, this field intensity can be significantly reduced if the particles are preaccelerated.
PL
Stosując metody teoretyczną i numeryczną przebadano warunki, w których naładowane cząstki o rożnych masach można przyspieszać do znacznej energii w kołowo spolaryzowanej laserowej bądź maserowej wiązce z dodatkowym statycznym polem magnetycznym. Badania przeprowadzono za pomocą wyprowadzonych analitycznych relacji dotyczących dynamiki i kinetycznej energii cząstek. Dzięki stosunkowo licznym wykresom stała się możliwa interpretacja dość złożonego ruchu cząstek oraz przebiegu ich akceleracji. Na przykładach elektronu, protonu i deuteronu zostały zilustrowane zależności od czasu trwania akceleracji takich wielkości jak kształt trajektorii oraz kinetyczna energia. Wszystkie ilustracje dotyczą warunku rezonansu, czyli synchronizacji ruchów obrotowych cząstki i wektora natężenia pola elektrycznego. Czym większa masa cząstki, tym większe natężenie stałego pola magnetycznego jest niezbędne do uzyskania warunku synchronizacji. Jednak to natężenie można znacznie zredukować, jeśli cząstka będzie posiadała prędkość początkową.
Rocznik
Strony
13--42
Opis fizyczny
Bibliogr. 38 poz., wykr.
Twórcy
autor
  • K. Pulaski University of Technology and Humanities, Radom, Faculty of Informatics and Math., 26-600 Radom, J. Malczewski’s 20A Str.
  • K. Pulaski University of Technology and Humanities, Radom, Faculty of Informatics and Math., 26-600 Radom, J. Malczewski’s 20A Str.
Bibliografia
  • [1] C. Benedetti, P. Londrillo, T. V. Liseykina, A. Macchi, A. Sgattoni, G. Turchetti, Ion acceleration by petawatt class laser pulses and pellet compression in a fast ignition scenario, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 606, 1-2, 2009, 89-93.
  • [2] Y. I. Salamin, Z. Herman, C. H. Keitel, Direct high-power laser acceleration of ions for medical applications, Phys. Rev. Lett, 100, 2008, 155004-155008.
  • [3] K. W. D. Ledingham, P. Mckenna, R. P. Singhal, Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers, Science, 300, 2003, 1107-1111.
  • [4] K. W. D. Ledingham, W. Galser, Laser-driven particle and photon beams and some applications, New Journal of Phys., 12, 2010, 1-66.
  • [5] Peter Baum, Ahmed H. Zewail, Attosecond electron pulses for 4D diffraction and microscopy, PNAS, 104, 2007, 18409-18414.
  • [6] M. Borghesi, J. Fuchs, O. Willi, Laser-accelerated high-energy ions: state of-the-art and applications, J. Phys.: Conf. Ser., 58, 2007, 74-80.
  • [7] Bruce A. Remington, David Arnett, R. Paul Drake, Hideaki Takabe, Modeling Astrophysical Phenomena in the Laboratory with Intense Lasers, Science, 284, 1999, 1488-1493.
  • [8] Fengchao Wang, Baifei Shen, Xiaomei Zhang, Xuemei Li, Zhangying Jin, Electron acceleration by a propagating laser pulse in vacuum, Phys. Plasmas, 14, 2007, 083102.
  • [9] K. P. Singh, Laser induced electron acceleration in vacuum, Physics of Plasmas, 11, 2004, 1164‑1167.
  • [10] K. P. Singh, V. K. Tripathi, Laser induced electron acceleration in a tapered magnetic wiggler, Physics of Plasmas, 11, 2004, 743-746.
  • [11] X. P. Zhang, Q. Kong, Y. K. Ho, P. X. Wang, Field structure and electron acceleration in a slit laser beam, Laser and Part. Beams, 28, 2010, 21-26.
  • [12] V. I. Berezhiani, N. L. Shatashvili, On the “vacuum heating” of plasma in the field of circularly polarized laser beam, Europhys. Lett., 76, 2006, 70-73.
  • [13] J. J. Xu, Q. Kong, Z. Chen, P. X. Wang, D. Lin, Y. K. Ho, Vacuum laser acceleration in circularly polarized fields, J. Phys. D: Appl. Phys., 40, 2007, 2464-2471.
  • [14] S. Y. Zhang, Accurate correction field of circularly polarized laser and its acceleration effect, J. At. Mol. Sci., 1, 2010, 308-317.
  • [15] Yousef I. Salamin, Electron dynamics in circularly-polarized laser and uniform electric fields: acceleration in vacuum, Phys. Lett., A, 283, 2001, 37-43.
  • [16] K. P. Singh, Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum, J. Appl. Phys., 100, 2006, 044907-1-044907-4.
  • [17] K. P. Singh, D. N. Gupta, V. Sajal, Electron energy enhancement by a circularly polarized pulse in vacuum, Laser and Particle Beams, 27, 2009, 635-642.
  • [18] D. N. Gupta, C. M. Ryu, Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum, Phys. Plasmas, 12, 2005, 053103-1-053103-5.
  • [19] H. Y. Niu, X. T. He, B. Qiao, C. T. Zhou, Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses, Laser and Particle Beams, 26, 2008, 51-59.
  • [20] D. N. Gupta, H. Suk, M. S. Hur, Laser electron acceleration: Role of an additional long-wavelength electromagnetic wave and a magnetic field, Journal of the Korean Physical Society, 54, 1, 2009, 376-380.
  • [21] M. J. Małachowski, A. Dubik, Difference in acceleration of electrons, protons and deuterons in a laser beam, J. of Achievements in Materials and Manufacturing Engineering, 41, July-August 2010, 82-90.
  • [22] X. C. Ge, R. X. Li, Z. Z. Hu, Phase dependence of relativistic electron dynamics and emission spectra in the superposition of an ultraintense laser field and a strong uniform magnetic field, Phys. Rev., E, 68, 2003, 056501-056508.
  • [23] Hong Liu, X. T. He, S .G. Chen, Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields, Phys. Rev., E, 69, 2004, 066409-1-066409-7.
  • [24] A. Dubik, M. J. Małachowski, Basic features of a charged particle dynamics in a laser beam with static axial magnetic field, Opto-Electronics Review, 17, 4, 2009, 275-286.
  • [25] A. Dubik, M. J. Małachowski, Resonance acceleration of a charged particle in a laser beam and static magnetic field, Journal of Technical Physics, 50, 2, 2009, 75-98.
  • [26] Zheng-Mao Sheng, Lun-Wu Zhu, M Y Yu, Zhi-Meng Zhang, Electron acceleration by intense laser pulse with echelon phase modulation, New J. of Phys., 12, 2010, 1-8.
  • [27] K. P. Singh, Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum, Phys. Rev., E, 69, 2004, 056410-1-056410-5.
  • [28] Shihua Huang, Fengmin Wu, Electron acceleration by a focused laser pulse in a static magnetic field, Phys. Plasmas, 14, 2007, 123107.
  • [29] H. K. Avetissian, K. H. V. Sedarkian, Nonlinear interaction of particles with strong laser pulses in a magnetic undulator, Phys. Rev. Special Topics-Accelerators and Beams, 13, 2010, 081301-1-081301-6.
  • [30] M. J. Małachowski, A. Dubik, Impact of the chirping effect on charged particle acceleration in laser radiation, J. of Achievements in Materials and Manufacturing Engineering, 48, 2011, 87-96.
  • [31] Kunwar Pal Singh, Vivek Sajal, Quasimonoenergetic collimated electrons from the ionization of nitrogen by a chirped intense laser pulse, Phys. of Plasmas, 16, 2009, 043113-1-043113-8.
  • [32] Jian-Xing Li, Wei-Ping Zang, Jian-Guo Tian, Electron acceleration in vacuum induced by tightly focused chirped laser pulse, Appl. Phys. Lett., 96, 2010, 031103-1-031103-3.
  • [33] Yousef I. Salamin, Fields of a tightly focused radially polarized laser beam: the truncated series versus the complex-source-point spherical wave representation, New J. Phys., 11, 2009, 033009-033017.
  • [34] A. Dubik, Movement of charge particles in electromagnetic field, Monograph, 101 Published at Radom University of Technology, Radom, 2007 (in Polish).
  • [35] A. Dubik, M. J. Małachowski, Exact solution of relativistic equations for charged particle motion in laser beam with static axial magnetic field (in Polish), Biul. WAT, 68, 1, 2009, 7-32.
  • [36] M. J Małachowski, A. Dubik, Basic features of the laser acceleration of charged particles, J. of Achievements in Materials and Manufacturing Engineering, 49, 2011, 412-420.
  • [37] W. B. Colson, S. K. Ride, A Laser Accelerator, Applied Physics, 20, 1979, 61-65.
  • [38] A. Dubik, M. J Małachowski, Acceleration of charged particles in laser and maser beams, Monography, 144, printed in Technical University of Radom, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aff79d29-7bad-44d4-be8d-be8f32d9b5cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.