PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanoobiekty

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Nano-objects at workplaces
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono niektóre zagadnienia związane z nanoobiektami (nazwa zwyczajowa: nanocząstki) i metodami badania ich parametrów. Podano definicje, przepisy prawne i normy oraz projekty badawcze ukierunkowane na uzyskanie wyników związanych z rzeczywistym narażeniem na nanoobiekty. Przedstawiono także przykładowe podejście do oceny potencjalnego narażenia na nanoobiekty występujące w środowisku pracy.
EN
In the article some issues connected with nanoobjects (vernacular of the "nanoparticles") and methods of investigation of nanoobjects parameters were presented. Definitions, provisions of law and norms and research projects directed at achieving results associated with real exposure to nanoobjects were given. An also model attempt at the evaluation of potential exposure to nanoobjects in a workplace was described.
Rocznik
Tom
Strony
7--20
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Centralny Instytut Ochrony Pracy – Państwowy Instytut Badawczy 00-701 Warszawa ul. Czerniakowska 16
Bibliografia
  • 1.Balshaw D. M., Philbert M., Suk W.A. (2005) Research strategies for safety evaluation of nanomaterials. Part III. Nanoscale technologies for assessing risk and improving public health. Toxicological Sciences 88(2), 298–306.
  • 2.Bard D., Mark D., Möhlmann C. (2009) Current standardisation for nanotechnology. Journal of Physics: Conference Series 170.
  • 3.Bihari P., Holzer M., Praetner M., Fent J., Lerchenberger M., Reichel CA., Rehberg M., Lakatos S., Krombach F.(2009) Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269(2-3), 148–54.
  • 4.Broekhuizen P., Broekhuizen F., Cornelissen R., Reijnders L. (2011) Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J. Nanopart. Res., doi 10.1007/s11051-010-0195-9.
  • 5.Brouwer D., Duuren-Stuurman B., Berges M., Jankowska E., Bard D., Mark D. (2009) From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res, doi 10.1007/s11051-009-9772-1, 11(8), 1867–1881.
  • 6.Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Official Journal of the European Union 20.10.2011, L 275/38 [text with EEA relevance].
  • 7.EC, SANCO C7, Explanatory note how the comments received during the public consultation were taken into account for the final SCENIHR opinion on the scientific basis for the definition of the term "nano-material" [http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032_note.pdf].
  • 8.EC, SEC(2009)1468, Nanosciences and Nanotechnologies: An action plan for Europe 2005-2009 - Second Implementation Report 2007-2009 [http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri] = COM:2009: 0607:FIN:EN:PDF.
  • 9.Fujitani Y., Kobayashi T., Arashidani K., Kunugita N., Suemura K. (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J. Occup. Environ. Hyg. 5(6), 380–389, doi 10.1080/15459620802050053.
  • 10.Hagendorfer H., Lorenz Ch., Kaegi R., Sinnet B., Gehrig R., Goetz N.V., Scheringer M., Ludwig Ch., Ulrich A. (2010) Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J. Nanopart. Res. 12, 2481-2494, doi 10.1007/s11051-009-9816-6.
  • 11.Han J.H., Lee E.J., Lee J.H., So K.P., Lee Y.H., Bae G.N., Lee S-B., Ji J.H., Cho M.H., Yu I.J. (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal. Toxicol. 20,741–749, doi 10.11080/08958370801942238.
  • 12.ICCA (International Council of Chemical Associations) Regulatory Definition of Nanomaterials, 2010 [http://www.icca-chem.org/ICCADocs/Oct-2010_ICCA-Core-Elements-of-a-Regulatory-Definition-of Manufac-tured-Nanomaterials.pdf].
  • 13.ISO/TR 27628 (2007) Workplace atmospheres – Ultrafine, nanoparticle and nano-structured aerosols–Inhalation exposure characterization and assessment.
  • 14.ISO/TS 27687 (2008) Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticle, nanofibre and nanoplate.
  • 15.Jankowska E., Zatorski W. (2009) Emission of nanosize particles in the process of nanoclay blending [W:] Proceedings of IEEE 147–151. Mexico, Cancun, doi 10.1109/ICQNM.2009.33.
  • 16.Joint Research Center (JRC), JRC Reference Report Considerationson a Definition of nanomaterial for Reg-ulatory Purposes, EUR 24403 EN, 2010 [http://ec.europa.eu/dgs/jrc/downloads/jrc_reference_ eport_201007_nanomaterials.pdf].
  • 17.Kreyling WG., Semmler-Behnke M., Seitz J., Szymczak W., Wenk A., Mayer P., Takenaka S., Oberdörster G. (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal. Toxicol. 21(suppl. 1), 55–60.
  • 18.Kreyling W.G., Biswas P., Messing M.E., Gibson N., Geiser M., Wenk A., Sahu M., Deppert K., Cydzik I., Wigge Ch., Schmid O., Semmler-Behnke M. (2011) Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J. Nanopart. Res. 13(2), 511–524.
  • 19.Kumar P., Fennell P., Robins A. (2010) Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J. Nanopart. Res. 12(5), 1523–1530, doi 10.1007/s11051-010-9893-6.
  • 20.Marra J., Voetz M., Kiesling H-J. (2010) Monitor for detecting and assessing exposure to airborne nanopar-ticles. J. Nanopart. Res. 12(10), 21-37, doi 10.1007/s11051-009-9695-x.
  • 21.Mark D. (2007) Occupational exposure to nanoparticles and nanotubes. Issues Environmental Science and Technology 24, 50–80.
  • 22.Oberdörster G., Gelein R.W.K., Cox C. (2004) Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 16, 437–445.
  • 23.Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials. Elements of a screening strategy. Part Fibre Toxicol. 2–8.
  • 24.Ogura I., Sakurai H., Mizuno K., Gamo M. (2011) Release potential of single-wall carbon nanotubes pro-duced by super-growth method during manufacturing and handling. J. Nanopart. Res. 13(3), 1265–1280, doi 10.1007/s11051-010-0119-8.
  • 25.Sahu M., Biswas P. (2010) Size distributions of aerosols in an indoor environment with engineered nanopar-ticle synthesis reactors operating under different scenarios. J. Nanopart. Res. 12 (3), 1055–1064, doi 10.1007/s11051-010-9874-9.
  • 26.SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks. Scientific basis for defi-nition of the term "Nanomaterial", 8 December 2010 [http://ec.europa.eu/health/scientific_committees/ emerging/docs/scenihr_o_032.pdf].
  • 27.Schulte P.A., Murashov V., Zumwalde R., Kuempel E.D., Geraci C.L. (2010) Occupational exposure limits for nanomaterials: state of the art. J. Nanopart. Res. 12(6), 1971–1987, doi 10.1007/s11051-010-0008-1.
  • 28.Stebounova L.V., Guio E., Grassian V.H. (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J. Nanopart. Res. 13(1), 233–244, doi 10.1007/s11051-010-0022-3.
  • 29.The handbook of Texas – On-line [http://www.tshaonline.org/handbook/online/articles/ CC/doc1.html].
  • 30.Tiered approach to an exposure measurement and assessment of nanoscale aerosols released from engineered nanomaterials in workplace operations (2011) [https://www.vci.de/Downloads/Nanomaterials%20in% 20Workplace%20Operations.pdf.].
  • 31.Tsai S-J., Ada E., Isaacs J.A., Ellenbecker M.J. (2009) Airborne nanoparticle exposures associated with the manu-al handling of nanoalumina and nanosilver in fume hoods. J. Nanopart. Res. 11, 147–161, doi 10.1007/s11051-008-9459-z.
  • 32.Yeganeh B., Kull C.M., Hull M.S., MarrL.C. (2008) Characterization of airborne particles during production of carbonaceous nanomaterials. Environ. Sci. Technol. 42, 4600–4606, 2008, doi 10.1021/es703043c.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4d6974bd-7047-4bdc-8f9b-b781a2c0a056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.