PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of this work is to analyse the process of synthesis of oxide ceramic coatings in plasma electrolytes on 2024 aluminium alloy and to form an electrolyte which allows to reduce energy consumption for the coating formation. Design/methodology/approach: The oxide ceramic coatings were synthesized on 2024 aluminium alloy. The coatings were formed by the alternate application of anode and cathode pulses to the sample. X-ray diffraction analysis of coatings was performed on a DRON-3.0 X-ray diffractometer using CuKa radiation. The thickness of the coatings was determined using a CHY TG-05 thickness gauge. The porosity of the coatings was investigated by analysing the micrographs of the plasma electrolyte oxidation (PEO) coatings obtained on a scanning electron microscope at x500 magnification using the image processing technique. Findings: The electrolyte with 5 g/l H2O2 additive have been elaborated as an optimal composition for synthesis of a coating with an increased content of corundum (a-Al2O3) as compared to a coating synthesized in the same mode in the 3KOH+2Na2SiO3 electrolyte without H2O2. This synthesis mode allows obtaining a coating with a high corundum content at low energy consumption. Research limitations/implications: For further optimization of the synthesis modes, it is necessary to analyse the influence of the phase composition and porosity of the obtained oxide ceramic coatings on their microhardness, wear resistance, and corrosion resistance. Practical implications: Based on the developed modes of synthesis of the coatings, it will be possible to obtain wear and corrosion resistant oxide ceramic coatings with predetermined functional properties and to reduce energy consumption for their formation. Originality/value: Methods for accelerating the formation of coatings have been proposed and tested, in particular, by adding various amounts of hydrogen peroxide to the electrolyte. The content of oxides in the obtained coatings, in particular, their ratios at various concentrations of hydrogen peroxide in the electrolyte, were determined by X-ray phase analysis. The modes of synthesis of the coatings were developed which allow obtaining a continuous coating without cracks with simultaneous decreasing porosity from 4.32% to 3.55-3.53%.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • The John Paul II Catholic University of Lublin, Racławickie 14 Ave., 20-950 Lublin, Poland
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
Bibliografia
  • [1] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) 14-41. DOI: https://doi.org/10.5604/01.3001.0014.1598
  • [2] G.W. Critchlow, K.A. Yendall, D. Bahrani, A. Quinn, F. Andrews, Strategies for the replacement of chromic acid anodizing for the structural bonding of aluminium alloys, International Journal of Adhesion and Adhesives 26/6 (2006) 419-453. DOI: https://doi.org/10.1016/j.ijadhadh.2005.07.001
  • [3] K. Szymkiewicz, J. Morgiel, L. Maj, M. Pomorska, M. Tarnowski, O. Tkachuk, I. Pohrelyuk, T. Wierzchoń, Effect of nitriding conditions of Ti6Al?Nb on microstructure of TiN surface layer, Journal of Alloys and Compounds 845 (2020) 156320. DOI: https://doi.org/10.1016/jjallcom.2020.156320
  • [4] S.A. Abdel-Gawad, W. Osman, A. Fekry, Characte- rization and corrosion behavior of anodized Aluminum alloys for military industries applications in artificial seawater, Surfaces and Interfaces 14 (2019) 314-323. DOI: https://doi.org/10.1016/j.surfin.2018.08.001
  • [5] Z.A. Duriagina, T.M. Kovbasyuk, S.A. Bespalov, The analysis of competitive methods of improvement of operational properties of functional layers of flat heating elements, Uspehi Fiziki Metallov 17 (2016) 29-51. DOI: https://doi.org/10.15407/ufm.17.01.029
  • [6] V.G. Efremenko, K. Shimizu, T.V. Pastukhova, Y.G. Chabak, K. Kusumoto, A.V. Efremenko, Effect of bulk heat treatment and plasma surface hardening on the microstructure and erosion wear resistance of complex-alloyed cast irons with spheroidal vanadium carbides, Journal of Friction and Wear 38/1 (2017) 58-64. DOI: https://doi.org/10.3103/S1068366617010056
  • [7] L. Ropyak, V. Ostapovych, Optimization of process parameters of chrome plating for providing quality indi- cators of reciprocating pumps parts, Eastern-European Journal of Enterprise Technologies 2 (2016) 50-62. DOI: https://doi.org/10.15587/1729-4061.2016.65719
  • [8] M.M. Student, V.V. Shmyrko, M.D. Klapkiv, I.M. Lyasota, L.N. Dobrovol’ska, Evaluation of the mecha-nical properties of combined metal-oxide-ceramic layers on aluminum alloys, Materials Science 50 (2014) 290¬295. DOI: https://doi.org/10.1007/s11003-014-9720-9
  • [9] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surface and Coatings Technology 122 (1999) 73-93. DOI: https://doi.org/10.1016/S0257-8972(99)00441-7
  • [10] X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, A. Matthews, Abrasive wear/corrosion properties and TEM analysis of AhOs coatings fabricated using plasma electrolysis, Surface and Coatings Technology 149 2002) 245-251. DOI: lillps://doi.org/10.1016/S0257-8972(01)01453-0
  • [11] M.M. Student, V.M. Dovhunyk, M.D. Klapkiv, V.M. Posuvailo, V.V. Shmyrko, A.P. Kytsya, Tribological properties of combined metal-oxide-ceramic layers on light alloys, Materials Science 48 (2012) 180-190 DOI: https://doi.org/10.1007/s11003-012-9489-7
  • [12] M.-G. Park, H.-C. Choe, Functional elements coatings on Ti-6Al-4V alloy by plasma electrolytic oxidation for biomaterials, Journal of Nanoscience and Nanotechnology 19/2 (2019) 1114-1117. DOI: https://doi.org/10.1166/jnn.2019.15903
  • [13] S.-Y. Park, H.-C. Choe, Functional element coatings on Ti-alloys for biomaterials by plasma electrolytic oxidation, Thin Solid Films 699 (2020) 137896. DOI: https://doi.org/10.1016Zj.tsf.2020.137896
  • [14] Y. Cheng, Q. Zhang, Z. Zhu, W. Tu, Y. Cheng, P. Skeldon, Potential and morphological transitions during bipolar plasma electrolytic oxidation of tantalum in silicate electrolyte, Ceramics International 46/9 (2020) 13385-13396. DOI: https://doi.org/10.1016/j.ceramint.2020.02.120
  • [15] R. Chaharmahali. A. Fattah-alhosseini. K. Babaei, Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review, Journal of Magnesium and Alloys (2020) (in press). DOI: https://doi.org/10.1016/j.jma.2020.07.004
  • [16] M.D. Klapkiv, Simulation of synthesis of oxide- ceramic coatings in discharge channels of a metal- electrolyte system, Materials Science 35 (1999) 279-283. DOI: https://doi.org/10.1007/BF02359992
  • [17] B. Kasalica, M. Petković-Benazzouz, M. Sarvan. I. Belca, B. Maksimović. B. Misailović, Z. Popović, Mechanisms of plasma electrolytic oxidation of aluminum at the multi-hour timescales, Surface and Coatings Technology 390 (2020) 125681. DOI: https://doi.org/10.1016/j.surfcoat.2020.125681
  • [18] M.D. Klapkiv, N.Yu. Povstyana, H.M. Nykyforchyn, Production of conversion oxide-ceramic coatings on zirconium and titanium alloys, Materials Science 42 (2006) 277-286 DOI: https://doi.org/10.1007/s11003- 006-0081-x
  • [19] V. Dehnavi, X.Y. Liu, B.L. Luan, D.W. Shoesmith, S. Rohani, Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, Surface and Coatings Technology 251 (2014) 106-114. DOI: https://doi.org/10.1016Zj.surfcoat.2014.04.010
  • [20] L.A. Snezhko, A.L. Erokhin, O.A. Kalinichenko, D.A. Misnyankin, Hydrogen release on the anode in the course of plasma electrolytic oxidation of aluminum, Materials Science 52 (2016) 421-430. DOI: https://doi.org/10.1007/s11003-016-9974-5
  • [21] M.D. Klapkiv, O.S. Chuchmarev, P.Ya. Sydor, V.M. Posuvailo, Thermodynamics of the interaction of alu-minum, magnesium, and zirconium with components of an electrolytic plasma, Materials Science 36 (2000) 66-79. DOI: https://doi.org/10.1007/BF02805119
  • [22] M.M. Student, I.B. Ivasenko, V.M. Posuvailo, H.H. Veselivs’ka, A.Y. Pokhmurs’kyi, Y.Y. Sirak, V.M. Yus’kiv, Influence of the porosity of a plasma- electrolytic coating on the corrosion resistance of D16 alloy, Materials Science 54 (2019) 899-906. DOI: https://doi.org/10.1007/s11003-019-00278-z
  • [23] I.B. Ivasenko, V.M. Posuvailo, M.D. Klapkiv, V.A. Vynar, S.I. Ostap’yuk, Express method for determining the presence of defects of the surface of oxide-ceramic coatings, Materials Science 45 (2009) 460-464. DOI: https://doi.org/10.1007/s11003-009-9191-6
  • [24] X. Shi-Gang, S. Li-Xin, Z. Rong-Gen, H. Xing-Fang, Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation, Surface and Coatings Technology 199 (2005) 184-188. DOI: https://doi.org/10.1016/j.surfcoat.2004.11.044
  • [25] J. Martin, P. Leone, A. Nomine, D. Veys-Renaux, G. Henrion, T. Belmonte. Influence of electrolyte ageing on the plasma electrolytic oxidation of aluminium, Surface and Coatings Technology 269 (2015) 36-46. DOI: https://doi.org/10.10.16j.surfcoat.2Q14.11.001
  • [26] L.W. Finger, R.M. Hazen, Crystal structure and compression of ruby to 46 kbar, Journal of Applied Physics 49 (1978) 5823-5826. DOI: https://doi.org/10.1063/1.324598
  • [27] K. Liddell, Univ. of Newcastle, Dept. of Mechanical, Materials and Manufacturing Engineering, England, UK, Private Communication, 1996
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4125416e-b68b-474b-8132-7c6f235b3647
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.