PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength analysis of a prototype composite helicopter rotor blade spar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the strenght of a conceptual main rotor blade dedicated to an unmanned helicopter. The blade is made of smart materials in order to optimize the efficiency of the aircraft by increasing its aerodynamic performance. This purpose was achieved by performing a series of strength calculations for the blade of a prototype main rotor used in an unmanned helicopter. The calculations were done with the Finite Element Method (FEM) and software like CAE (Computer-Aided Engineering) which uses advanced techniques of computer modeling of load in composite structures. Our analysis included CAD (Computer-Aided Design) modeling the rotor blade, importing the solid model into the CAE software, defining the simulation boundary conditions and performing strength calculations of the blade spar for selected materials used in aviation, i.e. fiberglass and carbon fiber laminate. This paper presents the results and analysis of the numerical calculations.
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr. 27 poz., fig., tab.
Twórcy
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department od Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Lublin, Poland
Bibliografia
  • 1. Azad, S., Mirghaderi, S. R., & Epackachi, S. (2021). Numerical investigation of steel and composite beam-to-encased composite column connection via a through-plate. Structures, 31(December 2020), 14–28. https://doi.org/10.1016/j.istruc.2021.01.040
  • 2. Balaskó, M., Sváb, E., Molnár, G., & Veres, I. (2005). Classification of defects in honeycomb composite structure of helicopter rotor blades. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 542(1–3), 45–51. https://doi.org/10.1016/j.nima.2005.01.010
  • 3. Debski, H., Rozylo, P., & Wysmulski, P. (2020). Stability and load-carrying capacity of short open-section composite columns under eccentric compression loading. Composite Structures, 252, 112716. https://doi.org/10.1016/j.compstruct.2020.112716
  • 4. Grodzki, W., Łukasiewicz, A., & Leśniewska, K. (2015). Modelling of UAV’S Composite Structures and Prediction of Safety Factor. Applied Computer Science, 11(3), 67–75.
  • 5. Jaafar, M., Makich, H., & Nouari, M. (2021). A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials. Journal of Manufacturing Processes, 69, 567–582. https://doi.org/10.1016/j.jmapro.2021.07.062 19
  • 6. Kang, Z., Shi, Z., Lei, Y., Xie, Q., & Zhang, J. (2021). Effect of the surface morphology on the bonding performance of metal/composite hybrid structures. International Journal of Adhesion and Adhesives, 111, 102944. https://doi.org/10.1016/j.ijadhadh.2021.102944
  • 7. Karny, M. (2017). The influence of the fastener hole preparation method on the fastener pull-through process in a carbon composite. Transactions on Aerospace Research, 1(246), 45–53. https://doi.org/10.2478/tar-2017-0005
  • 8. Klochkov, N., Zverkov, I., Kurlaev, N., & Ahmed, M. S. (2021). Improvement of non-destructive testing methods in diagnostics of composite honeycomb structures of civil aircraft. AIP Conference Proceedings, 2402, 020045. https://doi.org/10.1063/5.0071712
  • 9. Li, X., Wang, B., Xu, D., Wang, B., Dong, W., & Li, M. (2021). Super-high bonding strength of polyphenylene sulfide-aluminum alloy composite structure achieved by facile molding methods. Composites Part B: Engineering, 224, 109204. https://doi.org/10.1016/j.compositesb.2021.109204
  • 10. Megson, T. H. G. (2010). Introduction to Aircraft Structural Analysis. In Introduction to Aircraft Structural Analysis. Elsevier. https://doi.org/10.1016/C2009-0-62169-3
  • 11. Michalski, M., & Krauze, W. (2019). Influence of honeycomb core stabilization on composite sandwich structure geometry. Transactions on Aerospace Research, 3(256), 1–13. https://doi.org/10.2478/tar-2019-0013
  • 12. Peng, X. L., & Bargmann, S. (2021). A novel hybrid-honeycomb structure: Enhanced stiffness, tunable auxeticity and negative thermal expansion. International Journal of Mechanical Sciences, 190, 106021. https://doi.org/10.1016/j.ijmecsci.2020.106021
  • 13. Puchała, K., Jachimowicz, J., & Szymczyk, E. (2014). Analysis of load transfer into composite structure. Applied Computer Science, 10, 86–94.
  • 14. Rasuo, B. (2011). Experimental Techniques for Evaluation of Fatigue Characteristics of Laminated Constructions from Composite Materials: Full-Scale Testing of the Helicopter Rotor Blades. Journal of Testing and Evaluation, 39(2), 237–242. https://doi.org/10.1520/JTE102768
  • 15. Rathod, S., Tiwari, G., & Chougale, D. (2019). Ballistic performance of ceramic-metal composite structures. Materials Today: Proceedings, 41, 1125–1129. https://doi.org/10.1016/j.matpr.2020.08.759
  • 16. Różyło, P., & Wrzesińska, K. (2016). Numerical Analysis of Buckling and Critical Forces in a Closed Section Composite Profile. Applied Computer Science, 12(2), 54–62.
  • 17. Shahani, A. R., & Mohammadi, S. (2015). Damage tolerance approach for analyzing a helicopter main rotor blade. Engineering Failure Analysis, 57, 56–71. https://doi.org/10.1016/j.engfailanal.2015.07.025
  • 18. Siadkowska, K., & Borowiec, P. (2021). Strength analysis of the conceptual model of a main rotor blade spar with actuators. Journal of Physics: Conference Series, 1736(1), 012021. https://doi.org/10.1088/1742-6596/1736/1/012021
  • 19. Skiba, K. (2019). Designing and FEM simulation of the helicopter rotor and hub. IOP Conference Series: Materials Science and Engineering, 710, 012003. https://doi.org/10.1088/1757-899X/710/1/012003
  • 20. Skiba, K., Raczynski, R., Kliza, R., & Wendeker, M. (2021). Strength analysis of a propulsion shaft dedicated for the main rotor test bench. Journal of Physics: Conference Series, 1736(1), 012052. https://doi.org/10.1088/1742-6596/1736/1/012052
  • 21. Sukmaji, I. C., Wijang, W. R., Andri, S., Bambang, K., & Teguh, T. (2017). Application of sandwich honeycomb carbon/glass fiber-honeycomb composite in the floor component of electric car. AIP Conference Proceedings, 1788, 030056. https://doi.org/10.1063/1.4968309
  • 22. Szymański, R. (2020). Non-destructive testing of thermoplastic carbon composite structures. Transactions on Aerospace Research, 1(258), 34–52. https://doi.org/10.2478/tar-2020-0003
  • 23. Taymaz, H. A. (2017). Optimization of Composite Couplings in Helicopter Rotor Blade Spar Using Hybrid Particle Swarm-Gradient Algorithm. Bilge, 1(2), 71–78.
  • 24. Teter, A., & Gawryluk, J. (2016). Experimental modal analysis of a rotor with active composite blades. Composite Structures, 153, 451–467. https://doi.org/10.1016/j.compstruct.2016.06.013
  • 25. Visweswaraiah, S. B., Ghiasi, H., Pasini, D., & Lessard, L. (2013). Multi-objective optimization of a composite rotor blade cross-section. Composite Structures, 96, 75–81. https://doi.org/10.1016/j.compstruct.2012.09.031
  • 26. Waghmare, S., Shelare, S., Aglawe, K., & Khope, P. (2021). Materials Today: Proceedings A mini review on fibre reinforced polymer composites. Materials Today: Proceedings, in press. https://doi.org/10.1016/j.matpr.2021.10.379
  • 27. Wysmulski, P., Debski, H., & Falkowicz, K. (2020). Stability analysis of laminate profiles under eccentric load. Composite Structures, 238, 111944. https://doi.org/10.1016/j.compstruct.2020.111944
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80de3d16-2ebe-411f-a87a-596eb5c25315
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.