Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The work focuses on comparing three EN AW-2024 aluminium alloys with different chemical compositions within the standard limits to understand the influence of the chemical composition on the mechanical properties obtained. The study discusses the correlations between intermittent ageing processes and the improved strength, hardness, and fatigue resistance of some alloys compared to traditional aging processes. Design/methodology/approach: To understand how the chemical composition affects the mechanical properties, each alloy underwent T6I6 treatment (intermittent ageing with a weekly break) compared to traditional T6 treatment. The study involved SEM and TEM microscopic observations, as well as EDS tests to analyse the chemical composition, hardness, and uniaxial tensile testing. Findings: In the research conducted, both SEM and TEM microscopic observations revealed a similar percentage of intermetallic phase particles in the alloys. However, there were significant differences in the size and distribution of the particles. The alloy with the maximum Fe and Si content showed the highest particle refinement. Despite the observed differences in microstructure, the tests for Young's modulus, yield strength, and strength were found to be the same or very similar and were not influenced by the alloy processing process. The only notable difference in the strength parameters was the parameter marked as elongation in the direction of tension, with its lowest value observed in the alloy with the highest Si content. Research limitations/implications: The issue that arose during the analysis is accurately evaluating the alloy's morphology, particularly defining the three-dimensionality of the resulting phases using TEM. To conduct a more comprehensive analysis, additional tests need to be performed for statistical significance. In the future, SEM and TEM analyses and real-time tensile tests on specially prepared samples under the microscope would be beneficial. Practical implications: The work presented addresses whether the chemical composition of the standard area plays a crucial role in achieving consistent mechanical properties of the aluminium alloy after the ageing processes. Despite the observed structural differences, the material's mechanical properties remained unchanged. This information is valuable for process design. Originality/value: Comparison of mechanical properties, morphology, and phases formed after the ageing process of alloys of the same grade with minor differences in chemical composition.
Wydawca
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Łódź, Poland
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Łódź, Poland
autor
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa, Poland
autor
- Institute of Materials Science and Engineering, Lodz University of Technology, Łódź, Poland
Bibliografia
- [1] P.I Gouma, D.J Lloyd, M.J Mills, Precipitation processes in Al–Mg–Cu alloys, Materials Science and Engineering: A, 319-321 (2001) 439-442. DOI: https://doi.org/10.1016/S0921-5093(01)01049-8
- [2] S.P. Ringer, T. Sakurai, I.J. Polmear, Origins of hardening in aged Al-Cu-Mg-(Ag) alloys, Acta Materialia 45/9 (1997) 3731-3744. DOI: https://doi.org/10.1016/S1359-6454(97)00039-6
- [3] S. Wang, M. Starink, N. Gao, Overview of recent work on precipitation in Al-Cu-Mg alloys, Materials Science Forum 546-549 (2007) 775-782. DOI: https://doi.org/10.4028/www.scientific.net/MSF.546- 549.775
- [4] A. Staszczyk, J. Sawicki, B. Adamczyk-Cieslak, A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy after Different Aging Treatments, Materials 12/24 (2019) 4168. DOI: https://doi.org/10.3390/ma12244168
- [5] G. Sha, R.K.W. Marceau, S.P. Ringer, Precipitation and solute clustering in aluminum: advanced characterization techniques, in: R. Lumley (ed), Fundamentals of Aluminum Metallurgy: Production, Processing, and Applications, Woodhead Publishing, Oxford, 2011, 345-366. DOI: https://doi.org/10.1533/9780857090256.2.345
- [6] S. Gialanella, A. Malandruccolo, Aerospace Alloys, Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-24440-8
- [7] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials and Design (1980- 2015) 56 (2014) 862-871. DOI: https://doi.org/10.1016/j.matdes.2013.12.002
- [8] M. Brunet, B. Malard, N. Ratel-Ramond, C. Deshayes, S. Joulié, B. Warot-Fonrose, P. Sciau, J. Douin, F. De Geuser, A. Deschamps, Precipitation in original Duralumin A-U4G versus modern 2017A alloy, Materialia 8 (2019) 100429. DOI: https://doi.org/10.1016/j.mtla.2019.100429
- [9] Yashpal, C.S. Jawalkar, S. Kant, A Review on use of Aluminum Alloys in Aircraft Components, i-manager’s Journal on Material Science 3/3 (2015) 33-38. DOI: https://doi.org/10.26634/jms.3.3.3673
- [10] E.A. Starke, J.T. Staley, Application of modern aluminium alloys to aircraft, in: R. Lumley (ed), Woodhead Publishing Series in Metals and Surface Engineering, Fundamentals of Aluminium Metallurgy, Woodhead Publishing, Oxford, 2011, 747-783. DOI: https://doi.org/10.1533/9780857090256.3.747
- [11] S.G. Shabestari, M.H. Ghoncheh, H. Momeni, Evaluation of formation of intermetallic compounds in Al2024 alloy using thermal analysis technique, Thermochimica Acta 589 (2014) 174-182. DOI: https://doi.org/10.1016/j.tca.2014.05.024
- [12] F. Wang, Y. Zeng, B. Xiong, Y. Zhang, X. Li, Z. Li, H. Liu, Effect of Si addition on the microstructure and mechanical properties of Al–Cu–Mg alloy, Journal of Alloys and Compounds 585 (2014) 474-478. DOI: https://doi.org/10.1016/j.jallcom.2013.08.214
- [13] N. Radutoiu, J. Alexis, L. Lacroix, M. Abrudeanu, J-A. Petit, Study of the influence of the artificial ageing temperature on the AA2024 alloy microstructure Key Engineering Materials 550 (2013) 115-125. DOI: https://doi.org/10.4028/www.scientific.net/KEM.550. 115
- [14] M. Prudhomme, F. Billy, J. Alexis, G. Benoit, F. Hamon, C. Larignon, G. Odemer, C. Blanc, G. Hénaff, Effect of actual and accelerated ageing on microstructure evolution and mechanical properties of a 2024-T351 aluminium alloy, International Journal of Fatigue 107 (2018) 60-710. DOI: https://doi.org/10.1016/j.ijfatigue.2017.10.015
- [15] A. Cochard, K. Zhu, S. Joulié, J. Douin, J. Huez, L. Robbiola, P. Sciau, M. Brunet, Natural aging on Al-Cu- Mg structural hardening alloys – Investigation of two historical duralumins for aeronautics, Materials Science and Engineering: A 690 (2017) 259-269. DOI: https://doi.org/10.1016/j.msea.2017.03.003
- [16] G.S. Chen, M. Gao, R.P. Wei, Microconstituent- Induced Pitting Corrosion in Aluminum Alloy 2024- T3, CORROSION 52/1 (1996) 8-15. DOI: https://doi.org/10.5006/1.3292099
- [17] R.G. Buchheit, R.P. Grant, P.F. Hiava, B. Mckenzie, G.L. Zender, Local Dissolution Phenomena Associated with S Phase (AI2CuMg) Particles in Aluminum Alloy 2024-T3, Journal of The Electrochemical Society 144/8 (1997) 2621. DOI: https://doi.org/10.1149/1.1837874
- [18] F. Li, S. Chen, K. Chen, L. Huang, The role of Si on microstructure, mechanical and local corrosion behaviors of an Al–Cu–Mg–Si alloy with high Cu/Mg ratio, Journal of Alloys and Compounds 819 (2020) 152977. DOI: https://doi.org/10.1016/j.jallcom.2019.152977
- [19] L. Liu, J.H. Chen, S.B. Wang, C.H. Liu, S.S. Yang, C.L. Wu, The effect of Si on precipitation in Al–Cu– Mg alloy with a high Cu/Mg ratio, Materials Science and Engineering: A 606 (2014) 187-195. DOI: https://doi.org/10.1016/j.msea.2014.03.079
- [20] D.G. Eskin, Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys, Journal of Materials Science 38/2 (2003) 279-290. DOI: https://doi.org/10.1023/A:1021109514892
- [21] C.R. Hutchinson, S.P. Ringer, Precipitation processes in Al-Cu-Mg alloys microalloyed with Si, Metallurgical and Materials Transactions A 31/11 (2000) 2721-2733. DOI: https://doi.org/10.1007/BF02830331
- [22] A. Staszczyk, Multiscale Numerical Model of Multiphase Precipitates in Aluminum Alloy after Precipitation Hardening, PhD Thesis, Lodz University of Technology, Łódź, 2021 (in Polish).
- [23] R.B.C. Cayless, Alloy and Temper Designation Systems for Aluminium and Aluminium Alloys, in: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol 2, ASM Handbook, ASM International, Materials Park, OH, 1990, 15-28. DOI: https://doi.org/10.31399/asm.hb.v02.9781627081627
- [24] GIMP documentation. Available from: https://www.gimp.org/docs/ (Access in: 17/03/2024).
- [25] A.K. Valeeva, A.K. Akhunova, D.B. Kabirova, M.F. Imayev, R.F. Fazlyakhmetov, Influence length pin tools on hardening stop 2024 aluminum under processing mixing friction, Letters on Materials 11/2 (2021) 119-124 (in Russian). DOI: https://doi.org/10.22226/2410-3535-2021-2-119-124
- [26] M. Liang, L. Chen, G. Zhao, Y. Guo, Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet, Journal of Alloys and Compounds 824 (2020) 153943. DOI: https://doi.org/10.1016/j.jallcom.2020.153943
- [27] Y.Q. Chen, S.P. Pan, W.H. Liu, X. Liu, C.P. Tang, Morphologies, orientation relationships, and evolution of the T-phase in an Al-Cu-Mg-Mn alloy during homogenisation, Journal of Alloys and Compounds 709 (2017) 213-226. DOI: https://doi.org/10.1016/j.jallcom.2017.03.161
- [28] H. Mae, X. Teng, Y. Bai, T. Wierzbicki, Comparison of ductile fracture properties of aluminum castings: Sand mold vs. metal mold, International Journal of Solids and Structures 45/5 (2008) 1430-1444.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3062783a-f45a-4b26-b7aa-c7568f6b7d3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.