PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and electrochemical behaviour of weldments of titanium Grade 1 in a bromine-containing solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The presented research aims to determine the microstructural changes in weldments of commercially pure titanium Grade 1 after welding by hollow cathode arc discharge in vacuum and related changes in the corrosion behaviour of the weldments. Design/methodology/approach: Macro and microstructure of weldments were studied using optical microscopy. Corrosion behaviour of untreated Grade 1 and heat-affected zone of weldments of Grade 1 was investigated using electrochemical testing, including open circuit potential measurements and potentiodynamic polarisation. As an aggressive environment, 1 M KBr water solution was used. Findings: Welding by hollow cathode arc discharge in vacuum leads to the formation of a coarse Widmanstätten structure in the heat-affected zone. This imperfect structure results in a passive layer with worsened protective properties, thus increasing the corrosion rate of weldments by up to two orders of magnitude compared to Grade 1 in as-received condition. The passive layer on the welded surfaces did not allow Grade 1 to acquire a stable corrosion potential during potenitodynamic polarization. Research limitations/implications: Titanium and its alloys are passivating metallic materials, and their corrosion resistance depends on the properties of a thin protective surface layer. Changes in the underlying metal microstructure can affect the passivation behaviour of titanium and the properties of this layer. Welding by hollow cathode arc discharge in vacuum alters the microstructure of heat-affected zone, thereby causing Widmanstätten microstructure to form. As the passive layer over that microstructure has worsened protective properties, we suggest additional heat treatment after welding to be applied. Future experimental research on this topic is needed. Originality/value: Welding by hollow cathode arc discharge in vacuum is a welding method allowing weldments to be done in a clean environment and even in space. In the specialised literature, information on the structure and corrosion resistance of weldments of commercially pure titanium Grade 1 welded by hollow cathode arc discharge in vacuum is missing. The present research fills in a tiny part of this gap in our knowledge.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Department of Materials Science and Technology, “Angel Kanchev” University of Ruse, 8 Studentska str., POB 7017, Ruse, Bulgaria
  • Department of Materials Science and Technology, “Angel Kanchev” University of Ruse, 8 Studentska str., POB 7017, Ruse, Bulgaria
  • Department of Materials Science and Technology, “Angel Kanchev” University of Ruse, 8 Studentska str., POB 7017, Ruse, Bulgaria
autor
  • Department of Materials Science and Technology, “Angel Kanchev” University of Ruse, 8 Studentska str., POB 7017, Ruse, Bulgaria
Bibliografia
  • [1] J. Palán, L. Maleček, J. Hodek, M. Zemko, J. Dzugan, Possibilities of biocompatible material production using conform SPD technology, Archives of Materials Science and Engineering 88/1 (2017) 5-11. DOI: https://doi.org/10.5604/01.3001.0010.7746
  • [2] J. Klimas, A. Łukaszewicz, M. Szota, K. Laskowski, Work on the modification of the structure and properties of Ti6Al4V titanium alloy for biomedical applications, Archives of Materials Science and Engineering 78/1 (2016) 10-16. DOI: https://doi.org/10.5604/18972764.1226308
  • [3] L.A. Dobrzański, A. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, The structure and properties of aluminium alloys matrix composite materials with reinforcement made of titanium skeletons, Archives of Materials Science and Engineering 80/1 (2016) 16-30. DOI: https://doi.org/10.5604/18972764.1229614
  • [4] H. Nishikawa, K. Yoshida, T. Ohji, Y. Suita, K. Masubuchi, Characteristics of hollow cathode arc as welding heat source: arc characteristics and melting properties, Science and Technology of Welding and Joining 7/5 (2002) 280-285. DOI: https://doi.org/10.1179/136217102225004310
  • [5] T. Ohji, Characteristics of hollow cathode arc as welding heat source. Study on welding in space, Welding International 20/5(2006) 355-360. DOI: https://doi.org/10.1533/wint.2006.3595
  • [6] Y. Oshida, Oxidation and Oxides, in: Bioscience and Bioengineering of Titanium Materials, Elsevier, 2007, 79-103. DOI: https://doi.org/10.1016/B978-008045142- 8/50004-9
  • [7] P.A. Schweitzer, Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals. Corrosion Engineering Handbook, Second Edition, CRC Press/Taylor & Francis Group, 2007.
  • [8] M.G. Fontana, Corrosion Engineering, McGraw-Hill, New York, 1986.
  • [9] T.R. Beck, Pitting of Titanium: I. Titanium-Foil Experiments, Journal of The Electrochemical Society 120/10 (1973) 1310-1316. DOI: https://doi.org/10.1149/1.2403253
  • [10] T.R. Beck, Pitting of Titanium: II. One-Dimensional Pit Experiments, Journal of The Electrochemical Society 120/10 (1973) 1317-1324. DOI: https://doi.org/10.1149/1.2403254
  • [11] L.F. Garfias-Mesias, M. Alodan, P.I. James, W.H. Smyri, Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques, Journal of The Electrochemical Society 145/6 (1998) 2005-2010. DOI: https://doi.org/10.1149/1.1838590
  • [12] S.B. Basame, H.S. White, Pitting corrosion of titanium the relationship between pitting potential and competi-tive anion adsorption at the oxide film/electrolyte inter-face, Journal of The Electrochemical Society 147/4 (2000) 1376-1381. DOI: https://doi.org/10.1149/1.1393364
  • [13] I. Dugdale, J.B.Cotton, The anodic polarization of titanium in halide solutions, Corrosion Science 4/1-4 (1964) 397-411. DOI: https://doi.org/10.1016/0010- 938X(64)90041-1
  • [14] T.R. Beck, Stress Corrosion Cracking of Titanium Alloys: I. Ti:8‐1‐1 Alloy in Aqueous Solutions, Journal of The Electrochemical Society 114/6 (1967) 551-556. DOI: https://doi.org/10.1149/1.2426647
  • [15] T. Shibata, Y.-C. Zhu, The effect of film formation conditions on the structure and composition of anodic oxide films on titanium, Corrosion Science 37/2 (1995) 253-270. DOI: https://doi.org/10.1016/0010-938X(94)00133-Q
  • [16] N. Ferdinandov, D. Gospodinov, M. Ilieva, R. Radev, Structure and Pitting Corrosion of Ti-6Al-4V Alloy and Ti-6Al-4V Welds, Proceedings of the 7th International Conference on Advanced Materials and Systems “ICAMS 2018”, Bucarest, 2018, 325-330. DOI: https://doi.org/10.24264/icams-2018.VI.7
  • [17] D.D. Gospodinov, N.V. Ferdinandov, M.D. Ilieva, R.H. Radev, S.P. Dimitrov, Welding of Grade 1 Titnium by hollow cathode arc discharge in vacuum, International Scientific Journal "Machines. Technologies.Materials" 12/5 (2018) 216-218.
  • [18] M.D. Abramoff, P.J. Magalhaes, S.J. Ram, Image Processing with ImageJ, Biophotonics International 11/7 (2004) 36-42.
  • [19] J. Hrbac, V. Halouzka, L. Trnkova, J. Vacek, eL-Chem viewer: A freeware package for the analysis of electroanalytical data and their post-acquisition processing, Sensors 14/8 (2014) 13943-13954. DOI: https://doi.org/10.3390/s140813943
  • [20] J. Klimas, A. Łukaszewicz, M. Szota, K. Szota, Characteristics of titanium Grade 2 and evaluation of corrosion resistance, Archives of Materials Science and Engineering 77/2 (2016) 65-71. DOI: https://doi.org/10.5604/18972764.1225596
  • [21] A. Łukaszewicz, M. Szota, Influence of production method on selected properties of VT 22 titanium alloy, Archives of Materials Science and Engineering 87/1 (2017) 27-32. DOI: https://doi.org/10.5604/01.3001.0010.5968
  • [22] F. Fomin, M. Froend, V. Ventzke, P. Alvarez, S. Bauer, N. Kahaev, Metallurgical aspects of joining comer-cially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding, The International Journal of Advanced Manufacturing Technology 97 (2018) 2019-2031. DOI: https://doi.org/10.1007/s00170-018-1968-z
  • [23] M. Motyka, K.Kubiak, J. Sieniawski, W. Ziaja, Phase Transformations and Characterization of α + β Titanium Alloys, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (eds.), Comprehensive Materials Processing, Vol. 2, Elsevier, 2014, 7-36. DOI: https://doi.org/10.1016/B978-0-08-096532-1.00202-8
  • [24] J.L. Murray, The Fe−Ti (Iron-Titanium) system, Bulletin of Alloy Phase Diagrams 2 (1981) 320-334. DOI: https://doi.org/10.1007/BF02868286
  • [25] G. Lütjering, J.C. Williams, Commercially Pure (CP) Titanium and Alpha Alloys. In: Titanium. Engineering Materials and Processes. Springer, Berlin, Heidelberg, 2003, 175-201. DOI: https://doi.org/10.1007/978-3- 540-73036-1_4
  • [26] I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloys 5th Edition, Metallurgy of the Light Metals, Butterworth-Heinemann, 2017.
  • [27] Z.-B. Wang, H.-X. Hu, C.-B. Liu, H.-N. Chen, Y.-G. Zheng, Corrosion Behaviors of Pure Titanium and Its Weldment in Simulated Desulfurized Flue Gas Condensates in Thermal Power Plant Chimney, Acta Metallurgica Sinica (English Letters) 28/4 (2015) 477- 486. DOI: https://doi.org/10.1007/s40195-015-0222-z
  • [28] M. Froend, F. Fomin, S. Riekehr, P. Alvarez, F. Zubiri, S. Bauer, B. Klusemann, N. Kashaev, Fiber laser welding of dissimilar titanium (Ti-6Al-4V/cp-Ti) T-joints and their laser forming process for aircraft application, Optics and Laser Technology 96 (2017) 123-131. DOI: https://doi.org/10.1016/j.optlastec.2017.05.017
  • [29] P. Yadav, K. Saxena, Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview, Materials Today: Proceedings 26/2 (2020) 2546-2557. DOI: https://doi.org/10.1016/j.matpr.2020.02.541
  • [30] T. Pasang, Y. Tao, M. Azizi, O. Kamiya, M. Mizutani, W. Misiolek, Welding of titanium alloys, MATEC Web of Conferences 123 (2017) 00001. DOI: https://doi.org/10.1051/matecconf/201712300001
  • [31] A. Abdollahi, A.S. Ahnaf Huda, A.S. Kabir, Micro-structural Characterization and Mechanical Properties of Fiber Laser Welded CP-Ti and Ti-6Al-4V Similar and Dissimilar Joints, Metals 10/6 (2020) 747. DOI: https://doi.org/10.3390/met10060747
  • [32] J.W. Elmer, J. Wong, T. Ressler, Spatially resolved X-ray diffraction phase mapping and α → β → α transformation kinetics in the heat-affected zone of commercially pure titanium arc welds, Metallurgical and Materials Transactions A 29 (1998) 2761-2773. DOI: https://doi.org/10.1007/s11661-998-0317-5
  • [33] R.G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, First Edition, CRC Press, 2002.
  • [34] E. Blasco-Tamarit, A. Igual-Muñoz, J. García Antón, D. García-García, Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions, Corrosion Science 49/3 (2007) 1000-1026. DOI: https://doi.org/10.1016/j.corsci.2006.07.007
  • [35] A. Guillard,Q. Zhou, Effect of Microstructures on Corrosion Properties of CP-Ti for Medical Applications,Proceedings of the 3rd International Conference on Applied Mechanics and Mechanical Automation “AMMA 2017”, Phuket, 2017, 310-316.
  • [36] N. Casillas, S. Charlebois, W.H. Smyrl, H.S. White, Pitting Corrosion of Titanium, Journal of The Electrochemical Society 14/3 (1994) 636-642. DOI: https://doi.org/10.1149/1.2054783
  • [37] D. Prando, A. Brenna, M.V. Diamanti, S. Beretta, F. Bolzoni, M. Ormellese, M.P. Pedeferri, Corrosion of Titanium: Part 1: Aggressive Environments and Main Forms of Degradation, Journal of Applied Biomaterials and Functional Materials 15/4 (2017) 291-302. DOI: https://doi.org/10.5301/jabfm.5000387
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-34fa11a1-849e-4e09-a249-f23763eaeb6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.