PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lignocellulosic composites based on flax and thermoplastics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing global population and widespread consumerism have led to a significant rise in waste generation. While recycling rates have improved, they remain insufficient, making innovative approaches to waste management necessary. One promising strategy involves utilizing agricultural by-products, such as flax pomace, a residue from oil extraction, as an alternative filler in wood plastic composites (WPC). This study investigates the feasibility of replacing conventional wood-based fillers in WPC with flax pomace to create more sustainable materials. Composites were produced using flax pomace and thermoplastics: high-density polyethylene (HDPE), polylactide (PLA), and polypropylene (PP). The materials underwent Fourier-transform infrared spectroscopy (FTIR) to analyze chemical structure, thermogravimetric analysis (TGA) to assess thermal stability, and scanning electron microscopy (SEM) to examine the morphology of composites. FTIR analysis showed that the materials are bonding physically, not chemically. All composites do not create a fully homogenous structure, but PLA_FLAX stands out due to its visibly loose and irregular internal structure, with noticeable gaps between particles. PE_FLAX and PLA_FLAX, occurred to be less thermally stable than neat polymers, but PP_FLAX showed the opposite. Composites made of flax pomace are promising alternatives for WPC. Further research and process optimization may support their application as wood-based product alternatives.
Twórcy
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences – SGGW, Poland
  • Faculty of Wood Technology, Warsaw University of Life Sciences – SGGW, Poland
Bibliografia
  • 1. BERNACCHIA R., PRETI R., VINCI G., 2014, Chemical composition and health benefits of flaxseed. Austin J Nutri Food Sci. 2. 1045.
  • 2. BORYSIUK P., 2012: Możliwości wytwarzania płyt wiórowo-polimerowych z wykorzystaniem poużytkowych termoplastycznych tworzyw sztucznych, wydawnictwo SGGW, Warszawa
  • 3. SMITH B. C., 2021, The Infrared Spectra of Polymers II: Polyethylene, Spectroscopy, 24-29
  • 4. BYLOK, F., 2016: Meandry konsumpcji we współczesnym społeczeństwie: konsumpcjonizm versus dekonsumpcja. Annales. Etyka w życiu gospodarczym, 19(1), 55-69.
  • 5. CAO, Y., WANG, W., WANG, Q., WANG, H., 2013: Application of Mechanical Models to Flax Fiber/Wood Fiber/Plastic Composites. BioResources, 8(3).
  • 6. CECEN, V., SEKI, Y., SARIKANAT, M., TAVMAN, I. H., 2008: FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. Journal of Applied Polymer Science, 108(4), 2163–2170. 7. CHAUDHARI, A., 2016: Nitrobenzene Oxidation for Isolation of Value Added Products from Industrial Waste Lignin. Journal of Chemical, Biological and Physical Sciences. 6. 501-513.
  • 8. CHIENG, B., IBRAHIM, N., YUNUS, W., HUSSEIN, M., 2013. Poly (lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6, 93–104.
  • 9. DEMIRBAS, A., 2011: Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280-1287.
  • 10. EPAMINONDAS, P. S., ARAÚJO, K. L. G. V., DE SOUZA, A. L., SILVA, M. C. D., QUEIROZ, N., SOUZA, A. L., SOLEDADE, L. E. B., SANTOS, I. M. G., & SOUZA, A. G., 2011: Influence of toasting on the nutritious and thermal properties of flaxseed. Journal of Thermal Analysis and Calorimetry J Therm Anal Calorim, 106(2), 551-555.
  • 11. FANG J., ZHANG L., SUTTON D., WANG X., LIN T., 2012, Needleless Melt-Electrospinning of Polypropylene Nanofibres. Journal of Nanomaterials. 2012. 10.1155/2012/382639.
  • 12. GARDNER, D. J., HAN, Y., WANG, L., 2015: Wood–plastic composite technology. Current Forestry Reports, 1, 139-150.
  • 13. GEITMANN-MÜGGE, L., 2021: Plastic Pollution–Crisis, Problem, or Business Opportunity?
  • 14. GEYER, R., JAMBECK, J. R., & Lavender Law, K., 2017: Production, use, and fate of all plastics ever made. Science Advances, (3), e1700782
  • 15. GONZÁLEZ-CANCHÉ N., FLORES-JOHNSON E., CORTES P., CARRILLO J., 2018, Evaluation of surface treatments on 5052-H32 aluminum alloy for enhancing the interfacial adhesion of thermoplastic-based fiber metal laminates. International Journal of Adhesion and Adhesives. 82. 90-99. 10.1016/j.ijadhadh.2018.01.003.
  • 16. KLYOSOV, A. A., 2007: Wood-plastic composites. John Wiley & Sons.
  • 17. LIPSKA, K., GOŁAWSKI, S., 2023: Flax pomace as a substitute for wood raw material in lignocellulosic composite technology. Annals of Warsaw University of Life Sciences SGGW Forestry and Wood Technology, vol. 123, pp. 86-95.
  • 18. NURAZZI, N. M., ABDULLAH, N., NORRRAHIM, M. N. F., KAMARUDIN, S. H., AHMAD, S., SHAZLEEN, S. S., KUZMIN, M., 2022: Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of PLA/cellulose composites. In Polylactic acid-based nanocellulose and cellulose composites (pp. 145-164). CRC Press.
  • 19. NOORUNNISA KHANAM P., AL ALI ALMAADEED M., 2015: Processing and characterization of polyethylene-based composites, Advanced Manufacturing: Polymer & Composites Science, 1:2, 63-79
  • 20. PN EN 1825-2 Oddzielacze tłuszczu. Część 2: Dobór wymiarów nominalnych, instalowanie, użytkowanie i eksploatacja.
  • 21. TOMASZEWSKA‐CIOSK, E., ZDYBEL, E., 2021: Properties of extruded corn snacks with common flax (Linum usitatissimum L.) and golden flax (Linum flavum L.) pomace. International Journal of Food Science & Technology, 56(4), 2009-2018.
  • 22. VÂRBAN R., CRIȘAN I., VÂRBAN D., ONA A., OLAR L., STOIE A., ȘTEFAN R., 2021: Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Appl. Sci. 11, 8570.
  • 23. WANG, G., LI, A., 2008: Thermal Decomposition and Kinetics of Mixtures of Polylactic Acid and Biomass during Copyrolysis, Chinese Journal of Chemical Engineering (Vol. 16, Issue 6, pp. 929–933). Elsevier BV. https://doi.org/10.1016/s1004-9541(09)60018-5
  • 24. www.braskem.com.br, a, https://www.braskem.com.br/Portal/Principal/Arquivos/html/boletm_tecnico/PE%20Chemical%20Resistance.pdf
  • 25. www.braskem.com.br, b, https://www.braskem.com.br/Portal/Principal/Arquivos/html/boletm_tecnico/PP%20Chemical%20Resistance.pdf
  • 26. www.jascoinc.com, https://jascoinc.com/wp-content/uploads/2018/11/APP-Note-280-SO-0006-Reduction-of-noise-from-water-vapor-and-carbon-dioxide-.pdf
  • 27. www.statista.com, https://www.statista.com/topics/5401/global-plastic-waste/#topicOverview
  • 28. www.thelinseedfarm.co.uk, https://www.thelinseedfarm.co.uk/linseed\
  • 29. www.un.org, a, https://www.un.org/en/global-issues/population
  • 30. www.un.org, b, https://www.un.org/en/unpdf/sdg-2023-12
  • 31. www.utia.tennessee.edu, https://utia.tennessee.edu/publications/wp-content/uploads/sites/269/2023/10/PB1779.pdf
  • 32. XU, KAIMENG & DU, GUANBEN & WANG, SIQUN., 2021: Wood Plastic Composites: Their Properties and Applications. 10.5772/intechopen.98918.
  • 33. YAN, L., CHOUW, N., & JAYARAMAN, K., 2014: Flax fibre and its composites–A review. Composites Part B: Engineering, 56, 296-317.
  • 34. YOSHIDA, S. AND YOSHIDA, H., 2003: Nondestructive analyses of unsaturated fatty acid species in dietary oils by attenuated total reflectance with Fourier transform IR spectroscopy. Biopolymers, 70: 604-613.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eef10bf8-943e-4e2d-a862-c85d374f7ef1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.