PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Machine Tool Operational Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the main directions in the development of machine tools and the practical implementations of new technologies by machine tool producers, aimed at meeting the business requirements. The possibilities of applying intelligent functions in high-performance machine tools and the trends in the development of intelligent machine tools are discussed. The vital importance of the holistic modelling and numerical simulation of the operational properties of machine tools at all the stages of their creation and the necessity of integrating the machine tool with the control system and the process during simulation and virtualization are highlighted.
Rocznik
Strony
5--24
Opis fizyczny
Bibliogr. 44 poz., tab., rys.
Twórcy
  • Wroclaw University of Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
autor
  • Wroclaw University of Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
Bibliografia
  • [1] ABELE E., ALTINTAS Y., BRECHER C., 2010, Machine tool spindle units, CIRP Annals - Manufacturing Technology, 59/4, 781-802.
  • [2] ALTINTAS Y., VERL A., BRECHER C., URIARTE L., PRITSCHOW G., 2011, Machine tool feed drives, CIRP Annals - Manufacturing Technology, 60/2, 779−796.
  • [3] ALTINTAS Y., KERSTING P., BIERMANN D., BUDAK E., DENKENA B., LAZOGLU I., 2014, Virtual process systems for part machining operations, CIRP Annals - Manufacturing Technology, 63, 585–605.
  • [4] ATTIA M.H., KOPS L., 1981, System approach to the thermal behavior and deformation of machine tool structures in response to the effect of fixed joints, J. Manuf. Sci. Eng., 103/1, 67−72.
  • [5] BRECHER Ch., 2009, Interaction of manufacturing process and machine tool, Annals of the CIRP, 58/2, 588−607.
  • [6] BRECHER CH., TROFIMOV Y., BÄUMLER S., 2011, Holistic modelling of process machine interactions in parallel milling. CIRP Annals - Manufacturing Technology, 60/1, 387−390.
  • [7] FORTUNATO A., ASCARI A., 2013, The virtual design of machining centers for HSM: Towards new integrated tools, Mechatronics ,23, 264–278.
  • [8] HONG J.W., CHEN J.S., 2012, Dynamic thermal error modeling of a built-in permanent magnet motor high-speed spindle, MM Science Journal, 9th International Conference on Machine Tools, Automation, Technology and Robotics, Prague, Czech Republic, ISSN 1803−1269.
  • [9] HOREJS O., MARES M., HORNYCH J., 2013, Complex verification of thermal error compensation model of a portal milling centre, International Conference NEWTECH 2013, Stockholm, Sweden, 322−332.
  • [10] ITO Y., 2012, Desirable deployment of Japanese machine tool industry in not distant future, Proc. of the 15th IMEC, Tokyo, Japan, 15−30.
  • [11] JEDRZEJEWSKI J., KWASNY W., 1992, Multisensor system fo200r diagnosing machine tools, Instrumentation and Measurement Technology Conference, IMTC '92, 9th IEEE, 194−199.
  • [12] JEDRZEJWSKI J., KWASNY W., KOWAL Z., MODRZYCKI W., 2008, Operational behaviour of high speed spindle unit, MM Science Journal, October 2008, 39−43.
  • [13] JEDRZEJEWSKI J., KWASNY W., 2010, Modelling of angular contact ball bearings and axial displacements for high-speed spindles, CIRP Annals Manufacturing Technology, 59, 377−382.
  • [14] JEDRZEJWSKI J., KWASNY W., MODRZYCKI W., 2011, Identification and reduction of thermal errors in high performance 5-axis machining centre, Total Quality Management & Excellence, 39/1, 17−22.
  • [15] JEDRZEJWSKI J., KWASNY W., 2013. Knowledge base and assumptions for holistic modelling aimed at reducing axial errors of complex machine tools, Journal of Machine Engineering, 13/2, 7−25.
  • [16] JEDRZEJEWSKI J., KWASNY W., KOWAL Z., WINIARSKI Z., 2014, Development of the modelling and numerical simulation of the thermal properties of machine tools, Journal of Machine Engineering, 14/3, 5−20.
  • [17] JEDRZEJEWSKI J., KWASNY W., KOWAL Z., WINIARSKI Z., 2014, In-house system for holistic modelling of machine tool operating properties, 2nd International Conference on Systems and Informatics, ICSAI 2014, Shanghai, China, 409−414.
  • [18] JEDRZEJEWSKI J., KWASNY W., 2015, A step towards the holistic modelling of the HSC machining centre and the efficient compensation of its errors, International Journal of Computer Integrated Manufacturing, (IJCIM), 28/1, 126−136.
  • [19] KEHL G., WAGNER P., 2014, Simulation method for determining the thermally induced displacement of machine tools - experimental validation and utilization in the design process, world academy of science, Engineering and Technology International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8/11, 1777−1784.
  • [20] KOPS L., ABRAMS D.M., 1984, Effect of shear stiffness of fixed joints on thermal deformation of machine tools, CIRP Annals - Manufacturing Technology, 33/1, 233−238.
  • [21] KNAP W., 2012, Trends and future possibilities of ISO standards for machine tools‒accuracy tests, capability tests and environmental assessment, The 15th International Machine Tool Engineers' Conference, (IMEC), Tokyo, Japan, 2-3 November (2012), 33−45.
  • [22] KWASNY W., TUREK P., JEDRZEJEWSKI J., 2011, Survey of machine tool error measuring methods, Journal of Machine Engineering, 11/4, 7−38.
  • [23] MARES M., SMOLIK J., 2013, Robustness and portability of machine tool thermal error compensation model based on control of participating thermal sources, Journal of Machine Engineering, 13/1, 24−36.
  • [24] MAYR J., JEDRZEJEWSKI J, UHLMANN E., M.A., DONMEZ, KNAPP W., HARTIG F., WENDT K., MORIWAKI T., SHORE P., ROBERT SCHMITT R, CHRISTIAN BRECHER C., WURZ T., WEGENER K., 2011, Thermal issues in machine tools, CIRP Annals - Manufacturing Technology, 61, 61, 771–791.
  • [25] Metalworking Insiders’ Report (Gardner Publications INC), Machine Tool Industry Japan 2014, 1.
  • [26] Ministry of Economy, trade and Industry (MET), Machine Tool Industry Japan 2014, 9.
  • [27] MOEHRING H.Ch., 2014, Advanced materials in machine tool structures, Proc. of the 16 th IMEC, Tokyo, Japan, 76−88.
  • [28] MORIWAKI T., 1993, Intelligent machine tool, Journal of JSME, 96/901, 1010−1014.
  • [29] NEUGEBAUER R., DENKENA B., WEGENER K., 2007, Mechatronic systems for machine tools, CIRP Annals - Manufacturing Technology, 56/2, pp. 657–686.
  • [30] NISHIYAMA Y., 2014, High-speed, high accuracy & high quality machining of machine tools by adopting new materials, Proc. of the 16 th IMEC, Tokyo, Japan, 89−96.
  • [31] SCHÄFERS, E., DENK J., HAMANN J., 2006, Mechatronic modeling and analysis of machine tools, Proceedings of the CIRP 2nd International Conference on High Performance Cutting, HPC'06, Vancouver.
  • [32] SCHWENKE H., KNAPPP W., HAITJEMA H., WECKENMANN A., SCHMITT R., DELBRESSINE F., 2008, Geometric error measurement and compensation of machines – An update, CIRP Annals – Manufacruring Technology, 57/2, 660−675.
  • [33] SCHWENKE H., 2012, The latest trends and future possibilities of volumetric error compensation for machine tools, The 15th International Machine Tool Engineers' Conference, IMEC, Tokyo, Japan, 2-3 November (2012), 57−71.
  • [34] SHIRASE K., NAKAMOTO K., 2013, Simulation technologies for the development of an autonomous and Intelligent Machine Tool, International Journal of Automation Technology, 7/1, 6−15.
  • [35] SHIRASE K., 2014, Advanced technologies, to achieve intelligent machine tool, Proc. of the 16 th IMEC, Tokyo, Japan, 119−128.
  • [36] SOSHI M., YU S., ISHII S., YAMAZAKI Y., 2011, Development of a high torque – high power spindle system equipped with a synchronous motor for high performance cutting, CIRP Annals - Manufacturing Technology, 60/1, 399−402.
  • [37] SULITKA M., SINDLER J., SUSEN J., 2014, Coupled modelling for machine tool structural optimization, Journal of Machine Engineering, 14/3, 21−34.
  • [38] SUZUKI Y., 2014, Development of intelligent functions of machine tools, Proc. of the 16 th IMEC, Tokyo, Japan, 139−159.
  • [39] TSUCHIYA S., 2010, Continuously renovating machines and systems adaptable for new era. Proceedings of the 14th International Machine Toll Engineers Conference, Tokyo, 13−25.
  • [40] TUREK P., JEDRZEJEWSKI J., MODRZYCKI W., 2010, Methods of machine tool error compensation, Journal of Machine Engineering, 10/4, 5−26.
  • [41] WAGNER P., Simulation in design of high performance machine tool, Gebr. HELLER Maschinenfabrik GmbH.
  • [42] WANG Z., SOSHI M., YAMAZAKI K., 2010, A comparative study on the spindle system equipped with synchronous and induction servo motors for heavy duty milling with highly stable torque control, CIRP Annals – Manufacturing Technology, 59, 369−372.
  • [43] WECK M., 1995, Reduction and compensation of thermal errors in machine tools, Annals of the CIRP, 44/2, 598−598.
  • [44] YAMADA Y., 2010, Indexing 5-axis machining process design support system shortening die fabrication lead time, Proceedings of the 14th International Machine Toll Engineers Conference, Tokyo, 87−97.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0c43a3cd-5b69-4f18-bd20-e1ab6a71c635
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.