Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents reduced order results for three different realistic scenarios with respect to the damage tolerance behaviour. The scenarios are dedicated to stiffened structures and feature the fuselage side panel, the upper fuselage panel and a lower wing panel. A wide range of parameter variations is discussed and the influence on the inspection interval is shown. Results may be used both in preliminary aircraft design and structural optimisation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--20
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
autor
- Technische Universität Braunschweig, Institute of Aircraft Design and Lightweight Structures, Hermann-Blenk-Str. 35, 38108 Braunschweig, Germany
autor
- Technische Universität Braunschweig, Institute of Aircraft Design and Lightweight Structures, Hermann-Blenk-Str. 35, 38108 Braunschweig, Germany
autor
- Technische Universität Braunschweig, Institute of Aircraft Design and Lightweight Structures, Hermann-Blenk-Str. 35, 38108 Braunschweig, Germany
autor
- IBK Innovation GmbH & Co. KG, Butendeichsweg 2, 21129 Hamburg, Germany
autor
- Technische Universität Braunschweig, Institute of Aircraft Design and Lightweight Structures, Hermann-Blenk-Str. 35, 38108 Braunschweig, Germany
autor
- Technische Universität Braunschweig, Institute of Aircraft Design and Lightweight Structures, Hermann-Blenk-Str. 35, 38108 Braunschweig, Germany
Bibliografia
- [1] Wheeler, O.E. “Spectrum Loading and Crack Growth.” Journal of Basic Engineering Vol. 94 No. 1 (1972): pp. 181-186. DOI 10.1115/1.3425362.
- [2] Poe, C.C. “Stress-Intensity Factor for A Cracked Sheet with Riveted and Uniformly Spaced Stringers.” Technical Report No. NASA TR R-358. NASA Langley Research Center, Hampton, VA (1971).
- [3] Nishimura, T. “Stress Intensity Factors for A Cracked Stiffened Sheet with Cracked Stiffeners.” Journal of Engineering Materials and Technology Vol. 113 No. 1 (1991): pp. 119-124. DOI 10.1115/1.2903366.
- [4] Chen, D. “Bulging of Fatigue Cracks in A Pressurized Aircraft Fuselage.” PhD thesis. LR-647. Delft University of Technology, Faculty of Aerospace Engineering. 1990. Available at: https://repository.tudelft.nl/islandora/object/uuid%3A701fe22e-2a46-4221-abbd-7ac6766b6203
- [5] Liu, Yaolong, Ali Elham, Peter Horst and Martin Hepperle. “Exploring vehicle level benefits of revolutionary technology progress via aircraft design and optimization.” Energies Vol. 11 No. 1 (2018): 166. DOI 10.3390/en11010166.
- [6] Werner-Westphal, Christian, Heinze, Wolfgang and Horst, Peter. “Multidisciplinary Integrated Preliminary Design Applied to Unconventional Aircraft Configurations.” Journal of Aircraft Vol. 45 No. 2 (2008): pp. 581-590. DOI 10.2514/1.32138.
- [7] Haftka, R. T., and Gürdal, Z. Elements of Structural Optimization, Springer Netherlands, Dordrecht (1992).
- [8] Hansen, Lars Uwe and Horst, Peter. “Multilevel Optimization in Aircraft Structural Design Evaluation.” Computers & Structures Vol. 86 (2008): pp 104-118. DOI 10.1016/j.compstruc.2007.05.021.
- [9] Loghin, Adrian and Ismonov, Shakhrukh. “Application of Response Surface Method in Probabilistic Fatigue Crack Propagation Life Assessment Using 3D FEA.” Procedia Structural Integrity. Vol. 28 (2020): pp. 2304-2311. DOI 10.1016/j.prostr.2020.11.0770.
- [10] Häusler, Sascha. M., Baiz, P.M., Tavares, S.M.O., Brot, A., Horst. Peter, Aliabadi, M.H., de Castro, P.M.S.T. and Peleg-Wolfin, Y. “Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part I: Model Overview.” Structural Durability & Health Monitoring Vol. 7 No. 3 (2011): pp. 163-190. DOI 10.3970/sdhm.2011.007.163.
- [11] Tavares, S. M. O., Häusler, Sascha M., Baiz, P. M., de Castro, P. M. S. T., Horst, Peter and Aliabadi, M. H. “Crack Growth Simulation in Integrally Stiffened Structures Including Residual Stress Effects from Manufacturing. Part II: Modelling and Experiments Comparison.” Structural Durability & Health Monitoring Vol. 7 No. 3 (2011): pp. 191-210. DOI 10.3970/sdhm.2011.007.191.
- [12] Häusler, Sascha M. and Horst, Peter. “Fast Analytical Algorithm for Fatigue Crack Life Estimations of Integrally Stiffened Metallic Panels.” Key Engineering Materials Vol. 385 (2008): pp. 529-532. DOI 10.4028/www.scientific.net/KEM.385-387.529.
- [13] Flügge, W. “Stress problems in Pressurized Cabins.” Technical Report No. NACA TN 2612. Stanford University. 1952. Available at: https://ntrs.nasa.gov/citations/199300833730 (visited on 12.07.2021).
- [14] Broek, David, Smith, Samuel H. and Rice, Richard C. “Generation of Spectra and Stress Histories for Fatigue and Damage Tolerance Analysis of Fuselage Repairs.” FAA Technical Center, DOT-VNTSC-FAA-91-16.1991.
- [15] Rapid Manual, Repair Assessment Procedure and Integrated Design. Analysis Methods Document, Version 2.1. 1998.
- [16] Hunter, P.A. “An Analysis of VGH Data from One Type of Four-Engine Turbojet Transport Airplane During Commercial Operations.” NASA Technical Note. National Aeronautics and Space Administration. 1968. Available at: https://ntrs.nasa.gov/citations/19680007053 (visited on 09.08.2021).
- [17] Gudmundsson, S. General Aviation Aircraft Design, Elsevier, Oxford, United Kingdom (2014).
- [18] Jang, J.R. “ANFIS: Adaptive-Network-Based Fuzzy Inference System.” IEEE Transactions on Systems, Man, and Cybernetics Vol. 23 No. 3 (1993): pp. 665-685. DOI 10.1109/21.256541.
- [19] Sample Flight data, available from: https://c3.ndc.nasa.gov/dashlink/projects/85/ (visited on 11.10.21).
- [20] Forman, R.G., Kearney, V.E. and Engle, R.M. “Numerical Analysis of Crack propagation in Cyclic-Loaded Structures.” Journal of Basic Engineering Vol. 89 No. 3 (1967): pp. 459-463. DOI 10.1115/1.3609637.
- [21] Swift, T. “Fracture Analysis of Stiffened Structure,” in Damage Tolerance of Metallic Structures: Analysis Methods and Applications, ASTM International, West Conshohocken, PA, USA, pp. 69-107 (1984).
- [22] Anderson, T. L. Fracture Mechanics: Fundamentals and Applications, Third Edition, CRC Press, Boca Raton (2005).
- [23] Pereira, Marcos, Darwish, Fathi Area Ibrahim, Camarão, Arnaldo Freitas and Motta, Sérgio Henrique. “On the Prediction of Fatigue Crack Retardation Using Wheeler and Willenborg Models.” Materials Research-Ibero-American Journal of Materials Vol. 10 No. 3 (2007): pp. 101-107. DOI 10.1590/S1516-14392007000200002.
- [24] Pedregosa, Fabian, Varoquaux, G., Gramfort, Alexandre, Michel, Vincent, Thirion, Bertrand, Grisel, Olivier, Blondel, Mathieu, Prettenhofer, Peter, Weiss, Ron, Dubourg, Vincent, Vanderplas, Jake, Passos, Alexandre, Cournapeau, David, Brucher, Matthieu, Perrot, Matthieu and Duchesnay Édouard. Scikit-learn: “Machine Learning in Python”. Journal of Machine Learning Research Vol. 12 (2011): pp. 2825-2830.
- [25] Matthes, Sigrun, Grewe, Volker, Dahlmann, Katrin, Frömming, Christine, Irvine, Emma, Lim, Ling, Linke, Florian, Lührs, Benjamin, Owen, Bethan, Shine, Keith, Stromatas, Stavros, Yamashita, Hiroshi and Yin, Feijia. “A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories.” Aerospace Vol. 4 No. 3 (2017): 42. DOI 10.3390/aerospace4030042.
- [26] Schumann, Ulrich, Graf, Kaspar and Mannstein, Hermann. “Potential to Reduce the Climate Impact of Aviation by Flight Level Changes.” AIAA Atmospheric Space Environments Conference. AIAA 2011-3376: pp. 1-22. Honolulu, Hawaii, June 27-30, 2011. DOI 10.2514/6.2011-3376.
- [27] Anthes, R.J. “Modified Rainflow Counting Keeping the Load Sequence.” International Journal of Fatigue Vol. 19 No. 7 (1997): pp. 529-535. DOI 10.1016/S0142-1123(97)00078-9.
- [28] Schijve, J. “Fatigue of Structures and Materials in the 20th Century and the State of the Art.” International Journal of Fatigue Vol. 25 No. 8 (2003): pp. 679-702. DOI 10.1016/S0142-1123(03)00051.
Uwagi
1. The authors thankfully acknowledge the funding of the work presented here in the IMeLa project within the German Luftfahrtforschungsprogramm under project number 20A1709D. The computations were performed with resources provided by the North-German Supercomputing Alliance (HLRN).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2917b0-930e-4ada-ba72-709a00eca262