PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology for Energy Efficiency and Sustainability Improvement of Batch Production Systems on the Example of Autothermal Thermophilic Aerobic Digestion Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study proposes a methodology for energy efficiency and sustainability improvement of the operating conditions of batch production systems. The methodology involves applying a conventional system for municipal wastewater treatment using the process of Autothermal Thermophilic Aerobic Digestion (ATAD) of sludge. Its sustainable operation is essential for the quality of the treated sludge and the reduction of environmental impact. An analysis of the possibilities for energy integration of processes in ATAD systems was performed. The structures for indirect energy integration of processes using storage tanks and mathematical models for describing energy integration for the studied object were proposed. The models are included within a two-stage stochastic optimization problem together with constraints on the physical, technical and technological feasibility of the integration frameworks and temperature constraints with an optimization criterion minimum redesign cost. The obtained results show significant energy savings as a result of energy integration and sustainability to temperature conditions in bioreactors.
Rocznik
Strony
103--115
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Institute of Chemical Engineering, Bulgarian Academy of Sciences, Akad. G. Bontchev, Str., Bl. 103, 1113 Sofia, Bulgaria
  • Institute of Chemical Engineering, Bulgarian Academy of Sciences, Akad. G. Bontchev, Str., Bl. 103, 1113 Sofia, Bulgaria
  • Institute of Chemical Engineering, Bulgarian Academy of Sciences, Akad. G. Bontchev, Str., Bl. 103, 1113 Sofia, Bulgaria
Bibliografia
  • 1. Boyadjiev Chr., Ivanov B., Vaklieva-Bancheva N., Pantelides C., Shah N. 1996. Optimal Energy Integration in Antibiotics Manufacture. Computers and Chemical Engineering, 20, S31-S36.
  • 2. Ivanov B., Peneva K., Bancheva N. 1993-a. Heat integration in batch reactors operating in different time intervals. Part I. A hot–cold reactor system with two storage tanks. Hung J Ind Chem, 21, 201–208.
  • 3. Ivanov B., Peneva K., Bancheva N. 1993-b. Heat integration in batch reactors operating in different time intervals. Part II. A hot–cold reactor system with a common storage tank. Hung J Ind Chem, 21, 209–216.
  • 4. Ivanov B., Peneva K., Bancheva N. 1993-c. Heat integration in batch reactors operating in different time intervals. Part III. Synthesis and reconstruction of integrated systems with heat tanks. Hung J Ind Chem, 21, 217–223.
  • 5. Kirilova E., Vaklieva-Bancheva N., Vladova R. 2016. Prediction of Temperature Conditions of Autothermal Thermophilic Aerobic Digestion Bioreactors at Wastewater Treatment Plants. International Journal Bioautomation, 20(2), 289–300.
  • 6. Klemes J., Friedler F., Bulatov I., Varbanov P. 2011. Sustainability in the Process Industry. Integraton and Optimization. McGraw Hill.
  • 7. Layden N., Mavinic D., Kelly H., Moles R., and Bartlett J. 2007-a. Autothermal thermophilic aerobic digestion (ATAD) – Part I: Review of origins, design, and process operation. J. Environ. Eng. Sci., 6, 666678.
  • 8. Narciso D., Faisca N., Pistikopoulos E. 2008. A framework for multi-parametric programming and control – An overview. IEEE International Engineering Management Conference, Europe, IEEE, 111–115.
  • 9. Pistikopoulos E., Liu P., Georgiadis M. 2010. Modelling and Optimization Issues of the Energy Systems of the Future. 13th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction, AIDIC SERVIZI SRL, 1–6.
  • 10. Raychaudhuri S. 2008. Introduction to Monte Carlo simulation. Proceedings of the 2008 Winter Simulation Conference, 91–100.
  • 11. Shopova E., Vaklieva-Bancheva N. 2006. Basic – a Genetic Algorithm for Engineering Problem Solution. Comput. and Chem. Eng. 30(8), 1293–1309.
  • 12. USEPA. 1990. Environmental regulations and technology: Autothermal thermophilic aerobic digestion of municipal wastewater sludge, Technical report, EPA/625/10–90/007, Washington, DC, United States Environmental Protection Agency, Office of Research and Development.
  • 13. Vaklieva-Bancheva N., Ivanov B., Shah N. and Pantelides C. 1996. Heat Exchanger Network Design for Multipurpose Batch Plants. Computers and Chemical Engineering, 20, 989–100.
  • 14. Vaklieva-Bancheva N., Kirilova E., Zhelev T., and Rojas-Hernandes J. 2010. Modeling of Energy Integrated ATAD System. Journal of International Scientific Publications: Materials, Methods & Technology, 4(1), 220–233.
  • 15. Vaklieva-Bancheva N., Kirilova E., Vladova R. 2014. Capturing Uncertainties for Sustainable Operation of Autothermal Thermophilic Aerobic Digestion Systems. Computer Aided Chemical Engineering, 33(B), 1729–1734, .
  • 16. Vaklieva-Bancheva N., Vladova R., Kirilova E. 2017. Mathematical modeling of energy integrated ATAD system for its sustainability improvement. Proceedings of the Second International Scientific Conference “Industry 4.0”, Borovets, Bulgaria, 158–160.
  • 17. Walmsley T., Benjamin H., Klemes J.,Tan R., Varbanov P. 2019. Circular Integration of processes, industries, and economies. Renewable and Sustainable Energy Reviews, Elsevier, 107(C), 507–515.
  • 18. Dąbrowski W., Radosław Ż., Mariusz R. 2016. Evaluation of energy consumption in agro-industrial wastewater treatment plant. J. Ecol. Eng., 17(3), 73–78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-46d850de-6e7f-494f-b126-040b46a912db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.