Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The major part of the radiation dose that humans receive from natural radioactive sources is due to inhalation of radon and its decay products. The study focuses on radon concentration (CRn) investigation in kindergartens and nurseries in the district of Montana. The infl uence of building characteristics on CRn was evaluated. The measurement of the CRn was performed using passive detectors. The survey was carried out between December 2019 and May 2020 with a total number of 602 detectors. The average value of CRn in the premises of the studied kindergartens and nurseries in this district is 125 Bq·m−3 , and the geometric mean (GM) value is 88 Bq·m−3 . The buildings that have built ventilation and sewerage systems have lower CRn. The effective doses of the children and workers were evaluated in order to assess the radon exposure.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
51--56
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- National Centre of Radiobiology and Radiation Protection 1606, Sofia, Bulgaria
autor
- National Centre of Radiobiology and Radiation Protection 1606, Sofia, Bulgaria
autor
- National Centre of Radiobiology and Radiation Protection 1606, Sofia, Bulgaria
autor
- National Centre of Radiobiology and Radiation Protection 1606, Sofia, Bulgaria
autor
- National Centre of Radiobiology and Radiation Protection 1606, Sofia, Bulgaria
autor
- Faculty of Medical Sciences G. Delcev University of Stip 2000, Stip, Republic of North Macedonia
Bibliografia
- 1. United Nations Scientific Committee on the Effects of Atomic Radiation. (2009). Effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation 2006 Report to the General Assembly, with scientific annexes. Vol. II. Annex E: Sources-to-effects assessment for radon in homes and workplace. New York: UN. https://www.unscear.org/docs/publications/2006/UNSCEAR_2006_Annex-ECORR.pdf.
- 2. Zeeb, H., Shannoun, F., & World Health Organization. (2009). Handbook on indoor radon: A public health perspective. Geneva, Switzerland: WHO.https://experts.umn.edu/en/publications/who-handbook-on-indoor-radon-a-public-health-perspective.
- 3. Pervin, S., Yeasmin, S., Khandaker, M. U., & Begum, A. (2022). Radon concentrations in indoor and outdoor environments of atomic energy center Dhaka, Bangladesh and concomitant health hazards. Front. Nucl. Eng., 1, 901818. https://doi.org/10.3389/fnuen.2022.901818.
- 4. Laughlin, J. M. (2012). Radon: Past, present, and future. Rom. J. Phys., 58, S5–S13. https://rjp.nipne.ro/2013_58_Suppl/0005_0013.pdf.
- 5. International Commission on Radiological Protection. (1992). Protection against radon-222 athome and work. Ann. ICRP, 23, 1–38. https://doi.org/10.1080/09553009414551371.6. International Organization for Standardization.(2012). Measurement of radioactivity in the environment – Air: radon-222 – Part 4: Integrated measurement method for determining average activity concentration using passive sampling and delayed analysis. ISO 11665-4:2020(en). https://www.iso.org/obp/ui/#iso:std:iso:11665:-4:ed-2:v1:en.
- 7. International Atomic Energy Agency. (2019). Design and conduct of indoor radon surveys. Vienna: IAEA.(Safety Reports Series no. 98). https://www-pub.iaea.org/MTCD/Publications/PDF/PUB1848_web.pdf.
- 8. International Commission on Radiological Protection. (2017). Occupational intakes of radionuclides: Part 3.ICRP Publication 137. Ann. ICRP, 46(3/4). https://journals.sagepub.com/doi/pdf/10.1177/ANIB_46_3-4.
- 9. Zhukovsky, M., Vasilyev, A., Onishchenko, A., & Yarmoshenko, I. (2018). Review of indoor radon concentrations in schools and kindergartens. Radiat. Prot. Dosim., 181, 6–10. DOI: 10.1093/rpd/ncy092.
- 10. Republic of Bulgaria Nuclear Regulatory Agency. (2020). Regulation on radiation protection, adopted by CM Decree no. 20/14.02.2018, amended by CM no. 455/22.12.2020. https://bnra.bg/media/2022/02/regulation-on-radiation-protection.pdf.
- 11. Mullerova, M., Kozak, K., Kovacs, T., Smetanova,I., Csordas, A., Grzadziel, D., Holy, K., Mazur, J.,Moravcsik, A., Neznal, Martin, & Neznal, Matej. (2016). Indoor radon survey in Visegrad countries. Appl. Radiat. Isot., 110, 124–128. DOI: 10.1016/j.apradiso.2016.01.010.
- 12. United Nations Scientifi c Committee on the Effects of Atomic Radiation. (2010). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2008 Report to the General Assembly with scientific annexes. Vol. I. New York: UN. https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2008_Report_Vol.I-CORR.pdf.
- 13. Ivanova, K., Stojanovska, Z., Kunovska, B., Chobanova, N., Badulin, V., & Benderev, A. (2019). Analysis of the spatial variation of indoor radon concentrations (national survey in Bulgaria). Environ. Sci. Pollut. Res. Int., 26(7), 6971–6979. DOI: 10.1007/s11356-019-04163-9.
- 14. Ivanova, K., Stojanovska, Z., Cenova, M., & Kunovska, B. (2017). Building-specific factors affecting indoor radon concentration variations in different regions in Bulgaria. Air Qual. Atmos. Health, 10(9),1151–1161. DOI: 10.1007/s11869-017-0501-0.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dfb732f2-b779-4080-a448-8680e8e85640