Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main purpose of navigation systems is a position determination different moving objects. For standard inertial navigation systems algorithm, the initial position data are required. Normally these data may be determined by astronomical techniques or satellite and radio navigation systems. However, astronomical techniques depend on climate conditions and satellite and radio systems can be disturbed by electromagnetic countermeasures. It is proposed to use an Inertial Measurement Unit (IMU) and a navigation computer for autonomous determination of an initial position. IMU should be composed of three accelerometers, three gyroscopes and a signal processing circuit. The method proposed the latitude determination uses projections of the Earth’s rate measured by orthogonal IMU gyroscopes and projections of the gravity acceleration measured by orthogonal IMU accelerometers. Experimental tests of the IMU with a ring laser gyros triad and precision pendulum accelerometers confirmed the efficiency of the method on a fixed base. The behavior of the latitude determination under vibration is researched. The latitude determination under vibration was considered analytically by Power Spectral Density theory. It was estimated a variance of the latitude under the broad-band vibration. The method operability under harmonic and random vibration of the base at the real time is considered.
Czasopismo
Rocznik
Tom
Strony
art. no. 2020201
Opis fizyczny
Bibliogr. 20 poz., 1 rys., wykr.
Twórcy
autor
- Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
autor
- Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
autor
- Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
autor
- Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
Bibliografia
- 1. P. G. Savage, “Blazing Gyros - The Evolution of Strapdown Inertial Navigation Technology For Aircraft,” J. Guid. Control. Dyn., vol. 36, no. 3, pp. 637-655, 2013.
- 2. O. J. Woodman, “An introduction to inertial navigation,” Cambridge, 2007. doi: 10.1119/1.3081061.
- 3. W. Quan, J. Li, X. Gong, and J. Fang, INS/CNS/GNSS integrated navigation technology. 2015.
- 4. F. O. Silva, E. M. Hemerly, and W. C. L. Filho, “Error analysis of analytical coarse alignment formulations for stationary SINS,” IEEE Trans. Aerosp. Electron. Syst., 2016, doi: 10.1109/TAES.2016.7738355.
- 5. F. O. Silva, E. M. Hemerly, and W. C. L. Filho, “Influence of latitude in coarse self-alignment of strapdown inertial navigation systems,” 2014, doi: 10.1109/PLANS.2014.6851496.
- 6. V. Larin and A. Tunik, “About Inertial-Satellite Navigation System without Rate Gyros,” Appl. Comput. Math., vol. 9, 2010.
- 7. Y. A. Litmanovich, “On one approach to the use of redundant information in attitude determination from two vector observations,” Gyroscopy Navig., vol. 3, no. 4, pp. 280-285, 2012, doi: 10.1134/S2075108712040074.
- 8. F. O. Silva, W. C. Leite Filho, and E. M. Hemerly, “Design of a stationary self-alignment algorithm for strapdown inertial navigation systems,” in IFAC-PapersOnLine, Jul. 2015, vol. 28, no. 9, pp. 55-60, doi: 10.1016/j.ifacol.2015.08.059.
- 9. Y. F. Jiang, “Error analysis of analytic coarse alignment methods,” IEEE Trans. Aerosp. Electron. Syst., 1998, doi: 10.1109/7.640292.
- 10. X. Wang and G. Shen, “A fast and accurate initial alignment method for strapdown inertial navigation system on stationary base,” J. Control Theory Appl., vol. 3, no. 2, pp. 145-149, May 2005, doi: 10.1007/s11768-005-0007-4.
- 11. H. Yang, B. Zhou, L. Wang, Q. Wei, and R. Zhang, “A novel method for fast stationary initial alignment based on extended measurement information,” IEEE Access, vol. 7, pp. 165873-165883, 2019, doi: 10.1109/ACCESS.2019.2953301.
- 12. L. Chang, F. Qin, and S. Jiang, “Strapdown Inertial Navigation System Initial Alignment Based on Modified Process Model,” IEEE Sens. J., vol. 19, no. 15, pp. 6381-6391, Aug. 2019, doi: 10.1109/JSEN.2019.2910213.
- 13. G. M. Yan, W. S. Yan, D. M. Xu, and H. Jiang, “SINS initial alignment analysis under geographic latitude uncertainty,” Aerosp. Control, vol. 26, no. 2, pp. 31-34, 2008.
- 14. Z. Y. Zheng, A. J. Zhou, J. Tang, and X. Bin Xu, “An Initial Alignment Method of SINS without Latitude Based on Calculation of Earth Axis Vector,” Yuhang Xuebao/Journal Astronaut., 2019, doi: 10.3873/j.issn.1000-1328.2019.01.009.
- 15. W. W. Lyu and X. H. Cheng, “Novel self-alignment algorithm with unknown latitude for SINS on swing base,” Zhongguo Guanxing Jishu Xuebao/Journal Chinese Inert. Technol., 2017, doi: 10.13695/j.cnki.12-1222/o3.2017.03.001.
- 16. Y. Wang, J. Yang, and B. Yang, “SINS initial alignment of swaying base under geographic latitude uncertainty,” Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin., 2012.
- 17. V. V. Avrutov, “Autonomous Determination of Initial Latitude with an Inertial Measuring Unit,” Int. Appl. Mech., 2018, doi: 10.1007/s10778-018-0913-z.
- 18. V. V. Avrutov, S. V. Golovach, and V. V. Tsisarzh, “Strapdown Gyro Latitude Finder,” in 2018 IEEE 38th International Conference on Electronics and Nanotechnology, ELNANO 2018 - Proceedings, Sep. 2018, pp. 511-514, doi: 10.1109/ELNANO.2018.8477485.
- 19. V. V. Avrutov, S.M. Davydenko, and V. S. Tsisarzh, “Strapdown lnertial North and Latitude Finder,” Proceedings of the DGON Inertial Sensors and Systems (ISS), September 11-12, 2018 Braunschweig, Germany. - pp. P04-P05. (IEEE Catalog Number: CFP1857W-ART, doi:10.1109/InertialSensors.2018.8577145.
- 20. S. Wang, G. Yang, W. Chen, and L. Wang, “Latitude determination and error analysis for stationary SINS in unknow-position condition,” Sensors (Switzerland), 2020, doi: 10.3390/s20092558.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7e3ad761-567d-448b-88fe-388aa9765481