Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wytrzymałość połączeń gwintowych wytwarzanych przyrostowo z materiałów polimerowych
Języki publikacji
Abstrakty
The article presents the results of strength tests of screw-nut threaded connections made of polymeric materials such as: ABS, PLA, PET-G and acrylic resin. In order to make physical models, three 3D printing techniques were used: Fused Deposition Modeling (FDM), Fused Filament Fabrication (FFF), and PolyJet. The tests took into account the stresses caused by the axial force generated when the bolt is screwed into the nut or other structural element. Due to the complexity of the issue, the presented studies are only a starting point for further research.
W artykule przedstawiono wyniki badań wytrzymałości połączeń gwintowych śruba-nakrętka wykonanych z materiałów polimerowych takich, jak: ABS, PLA, PET-G i żywicy akrylowej. Do wykonania modeli fizycznych stosowano trzy techniki druku 3D: FDM, FFF i PolyJet. W badaniach uwzględniono naprężenia spowodowane działaniem siły osiowej powstającej podczas wkręcania śruby w nakrętkę lub inny element konstrukcyjny. Ze względu na złożoność zagadnienia, przedstawione badania stanowią punkt wyjścia do dalszych badań.
Czasopismo
Rocznik
Tom
Strony
261--270
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Faculty of Chemistry, 35-959 Rzeszow, Poland.
autor
- Rzeszow University of Technology, Faculty of Electrical and Computer Engineering, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Doctoral School of Engineering and Technical Sciences, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Doctoral School of Engineering and Technical Sciences, 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Doctoral School of Engineering and Technical Sciences, 35-959 Rzeszow, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland
autor
- University of Žilina, Faculty of Mechanical Engineering, Department of Automation and Production Systems, SK-010 26 Žilina, Slovak Republic
autor
- University of Rzeszow, Institute of Physics, 35-959 Rzeszow, Poland
Bibliografia
- [1] Boboulos M.: “CAD-CAM and Rapid Prototyping Application Evaluation”, PhD and Ventus Publishing Aps, 2010.
- [2] Gdula M.: Metals 2020, 10, 932. https://doi.org/10.3390/met10070932
- [3] Xiao W. et al.: Robotics and Computer-Integrated Manufacturing 2015, 31, 1. https://doi.org/10.1016/j.rcim.2014.06.003
- [4] Thompson M.K. et al.: CIRP Annals 2016, 65, 737. https://doi.org/10.1016/j.cirp.2016.05.004
- [5] Mazurkow A., Sikorska-Czupryna S.: Advances In Manufacturing Science And Technology 2020, 44, 71. https://doi.org/10.2478/amst-2019-0013
- [6] Baggi E.: Adv EngSoftw 2009, 40, 407. https://doi.org/10.1016/j.advengsoft.2008.07.003
- [7] Leal R., Barreiros F.M., Alves L. et al.: International Journal of Advanced Manufacturing Technology 2017, 92, 1671. https://doi.org/10.1007/s00170-017-0239-8
- [8] Lecklider T.: Evaluation Engineering 2017, 56, 16.
- [9] Rokicki P. et al.: Aircraft Engineering and Aerospace Technology. An International Journal 2016, 88, 374. https://doi.org/10.1108/aeat-01-2015-0018
- [10] Raja V., Kiran J.F: “Reverse Engineering An Industrial Perspective”, Springer, New York, NY, USA, 2010.
- [11] Ciocca L. et al.: Medical and Biological Engineering and Computing 2012, 50, 743. https://doi.org/10.1007/s11517-012-0898-4
- [12] Turek P. et al.: Polimery 2020, 65, 510. https://doi.org/10.14314/polimery.2020.7.2
- [13] Garcia-Garcia R., Gonzalez-Palacios M.A.: The International Journal of Advanced Manufacturing Technology 2018, 98, 645. https://doi.org/10.1007/s00170-018-2246-9
- [14] Dziubek T., Oleksy M.: Polimery 2017, 62, 44. https://doi.org/10.14314/polimery.2017.044
- [15] Budzik G., Przeszlowski Ł., Wieczorowski M. et al.: AIP Conference Proceedings 2018, 140005. https://doi.org/10.1063/1.5034997
- [16] Zhong X. et al.: Engineering Structures 2019, 182, 153. https://doi.org/10.1016/j.engstruct.2018.12.065
- [17] Ivanov A.S. et al.: Russian Engineering Research 2015, 35, 571. https://doi.org/10.3103/s1068798x15080067
- [18] Bhonge P.S., Foster B.D., Lankarani H.M.: ASME International Mechanical Engineering Congress and Exposition 2011, 73. https://doi.org/10.1115/imece2011-62905
- [19] ISO 965-1:1998: ISO general purpose metric screw threads – Tolerances – Part 1: Principles and basic data, 1998.
- [20] ISO 262:1998, ISO general purpose metric screw threads – Selected sizes for screws, bolts and nuts, 1998.
- [21] ISO 724:1993, ISO general purpose metric screw threads – Basic dimensions, 1993.
- [22] ISO 68-1:1998, ISO general purpose screw threads – Basic profile – Part 1: Metric screw threads, 1998.
- [23] Leach R. K., Bourell D., Carmignato S. et al.: CIRP Annals 2019, 68, 677. https://doi.org/10.1016/j.cirp.2019.05.004
- [24] Kechagias, J.; Stavropoulos, P.; Koutsomichalis, A. et al.: Advances in Engineering Mechanics and Materials 2014, 61 (accessed on 10 December 2020). http://inase.org/library/2014/santorini/bypaper/MECHANICS/MECHANICS-07.pdf
- [25] Chen L., Lin W.-S., Polido W.D. et al.: Journal of Prosthetic Dentistry 2019, 122, 309. https://doi.org/10.1016/j.prosdent.2019.02.007
- [26] Turek P., Budzik G., Przeszłowski Ł.: Polymers 2020, 12, 2444. https://doi.org/10.3390/polym12112444
- [27] Gibson I., Rosen D.W., Stucker B.: “Additive Manufacturing Technologies”, Springer, New York, USA, 2014.
- [28] Budzik G., Woźniak J., Paszkiewicz A. et al.: Materials 2021, 14, 2202. https://doi.org/10.3390/ma14092202
- [29] Kozior T., Adamczak S.: “Amplitude Surface Texture Parameters of Models Manufactured by FDM Technology”. In The International Symposium for Production Research, Springer: Cham, Switzerland, 2018, pp. 208–217. https://doi.org/10.1007/978-3-319-92267-6_17
- [30] Fox J.C., Moylan S.P., Lane B.M.: Procedia CIRP 2016, 45, 131. https://doi.org/10.1016/j.procir.2016.02.347
- [31] Jamshidinia M., Kovacevic R.: Surface Topography: Metrology and Properties 2015, 3, 014003. https://doi.org/10.1088/2051-672x/3/1/014003
- [32] Turner B.N., Gold S.A.: Rapid Prototyping Journal 2015, 21, 250. https://doi.org/10.1108/rpj-02-2013-0017
- [33] Kawalec A., Magdziak M.: Measurement 2012, 45, 2330. https://doi.org/10.1016/j.measurement.2011.09.022
- [34] Pinto J. M., Arrieta C., Andia M.E. et al.: Medical Engineering and Physics 2015, 37, 328. https://doi.org/10.1016/j.medengphy.2015.01.009
- [35] Turek P., Budzik G., Sęp J. et al.: Polymers 2020, 12, 3029. https://doi.org/10.3390/polym12123029
- [36] Saqib S., Urbanic J.: “An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts” in “Enabling manufacturing competitiveness and economic sustainability”, Springer, Berlin, Heidelberg, 2012, pp. 293-298.
- [37] Pisula J., Dziubek T., Przeszłowski Ł.: Machine Dynamics Research 2016, 40, 147. http://mdr.simr.pw.edu.pl/index.php/MDR/article/view/200/182
- [38] Turek P., Budzik G.: Polymers 2021, 13(14), 2271. https://doi.org/10.3390/polym13142271
- [39] Brajlih T., Tasic T., Drstvensek I. et al.: Strojniškivestnik-Journal of Mechanical Engineering 2011, 57, 826-833. https://doi.org/10.5545/sv-jme.2010.152
- [40] Bazan A., Turek P., Przeszłowski Ł.: Journal of Mechanical Science and Technology2021, 35, 1167-1176. https://doi.org/10.1007/s12206-021-0230-z
- [41] Michaud M.: “CATIA Core Tools: Computer Aided Three-Dimensional Interactive Application”, McGraw-Hill Education, 2012.
- [42] ISO 4288:2011: Geometrical Product Specifications (GPS) – Surface texture: Profile method – Rules and procedures for the assessment of surface texture, 2011.
- [43] ISO 25178-2:2012: Geometrical Product Specifi cations (GPS) – Surface Texture: Areal – Part 2: Terms, Defi nitions and Surface Texture Parameters, 2012.
- [44] Bickford J.: “Handbook of Bolts and Bolted Joints”, CRC Press, Boca Raton, 1998
- [45] Childs T.H.C. (ed.): “Mechanical Design. Theory and Applications” (Third Edition), Butterworth-Heinemann, Oxford, 2021.
- [46] Witek A., Grzejda R.: „Sposób modelowania złącza śrubowego a obciążenie robocze śruby”. In „Podstawy Konstrukcji Maszyn. Kierunki Badań i Rozwoju”. Tom III, Wyd. Politechniki Gdańskiej, Gdańsk, 2011, pp. 101-109.
- [47] Witek A.: “Wytrzymałość śruby – wysokość nakrętki” (access 2021.10.29). https://docer.pl/doc/xves588
- [48] Dębski M., Magniszewski M., Bernaczek J. et al.: Polimery 2021, 66, 298. https://doi.org/10.14314/polimery.2021.5.3
- [49] Budzik G., Magniszewski M., Przeszłowski Ł. et al.: Polimery 2018, 63, 830. https://doi.org/10.14314/polimery.2018.11.13
- [50] Oleksy M. Oliwa R., Bulanda K. et al.: Polimery 2021, 66(1), 52. https://doi.org/10.14314/polimery.2021.1.7
- [51] Bączkowski M., Marciniak D., Bieliński M.: Polimery 2021, 66(9), 480. https://doi.org/10.14314/polimery.2021.9.5
- [52] Czyżewski P., Marciniak D., Nowinka B. et al.: Polymers 2022, 14(2), 356. https://doi.org/10.3390/polym14020356
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ffc56507-ca07-462a-bc70-40d6e0729e16