PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of energy saving possibilities in cyclic fixed-bedadsorption process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cyclic Electrothermal Temperature Swing Adsorption (ETSA) process in a fixed-bed column withSupersorbon K40 activated carbon (AC) was applied to remove propan-2-ol (IPA) from air. The bedwas electrothermally regenerated using direct resistive heating method. The tests were performed inthe range of operating parameters: IPA loading 0.18-0.26 kg/kg, voltage 19.5 V, set-point temperature393–403 K, nitrogen flow rate 0.12 m3/h.The analysis revealed, that raising the bed temperature resulted in an increase of desorption degree ofadsorbate, reduction of regeneration time and an increase in the energy consumption. The applicationof insulation enabled reduction of energy consumption and regeneration time by 27% and 10%,respectively.
Rocznik
Strony
209–--219
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology,Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Activated Carbon Market – Global Forecast to 2021; Market Research Report, 2017. Available at:https://www.marketsandmarkets.com/Market-Reports/activated-carbon-362.html.
  • 2. Activated Carbon Market Size, Share & Trends Analysis Report 2019–2025, 2019. Available at: https://www.grandviewresearch.com/industry-analysis/activated-carbon-market.
  • 3. Ambrożek B., 2009. Chapter: The Simulation of cyclic thermal swing adsorption (TSA) process, In: Mitkowski W.,Kacprzyk J.,Modelling dynamics in processes and systems. studies in computational intelligence. Springer-Verlag,Berlin, Heidelberg, 165–178. DOI:10.1007/978-3-540-92203-2_12.
  • 4. Aygün A., Yenisoy-Karakaş S., Duman I., 2003. Production of granular activated carbon from fruit stones andnutshells and evaluation of their physical, chemical and adsorption properties.Microporous Mesoporous Mater.,66, 189–195. DOI:10.1016/j.micromeso.2003.08.028.
  • 5. Bthen D., Breitbach M., 2001. Einführung in die Adsorptionstechnik, In: Bathen D., Breitbach M.,Adsorption-stechnik. VDI-Buch. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-642-18235-8_1.
  • 6. Council Directive 1999/13/EC of 11 March 1999 on the limitation of emissions of volatile organic compounds dueto the use of organic solvents in certain activities and installations.Official J. L085, 29/03/1999, 0001–0022.
  • 7. Downarowicz D., 2015. Adsorption characteristics of propan-2-ol vapours on activated carbon Sorbonorit 4 inelectrothermal temperature swing adsorption process.Adsorption, 21, 87–98. DOI:10.1007/s10450-015-9652-1.
  • 8. Downarowicz D., Gabruś E., 2008. Electrothermal temperature swing adsorption. A chance of effective VOCrecovery from flue gases.Przem. Chem., 87, 768–774.
  • 9. Downarowicz D., Kowalski K., 2020. Electrothermal regeneration of BPL activated carbon: Possibilities for im-provement of process efficiency.Chem. Pap., 17, 1945–1956. DOI:10.1007/s11696-019-01042-y.
  • 10. Emamipour H., Hashisho Z., Cevallos D., Rood M.J., Thurston D.L., Hay K.J., Kim B.J., Sullivan P.D., 2007.Steady-state and dynamic desorption of organic vapor from activated carbon with electrothermal swing adsorption.Environ. Sci. Technol., 41, 5063–5069. DOI:10.1021/es0703022.
  • 11. Guyer J. P., 2017.An introduction to applications of carbon adsorption for waste treatment. The Clubhouse Press,El Macero, California.
  • 12. Králik M., 2014. Adsorption, chemisorption, and catalysis.Chem. Pap., 68, 1625–1638. DOI:10.2478/s11696-014-0624-9
  • 13. Logsdon J.E., Loke R., A., 2000. Isopropyl Alcohol, In: Ley C. (Ed.)Kirk-Othmer Encyclopedia of ChemicalTechnology. John Wiley & Sons, Inc. DOI:10.1002/0471238961.0919151612150719.a01.
  • 14. Luo L., Ramirez D., Rood M. J., Grevillot G., Hay K.J., Thurston D.L., 2006. Adsorption and electrothermaldesorption of organic vapors using activated carbon adsorbents with novel morphologies.Carbon, 44, 2715–2723. DOI:10.1016/j.carbon.2006.04.007.
  • 15. Lupi S., Forzan M., Aliferov A., 2015.Induction and direct resistance heating: Theory and numerical modeling.Springer International Publishing.
  • 16. Patel, H., 2019. Fixed-bed column adsorption study: a comprehensive review.Appl. Water Sci., 9, 45. DOI:10.1007/s13201-019-0927-7.
  • 17. Propan-2-ol safety data sheet, 2015. Available at: https://library.e.abb.com/public/3e08e5a215c04e3fa7f2a7e7322a17ad/ISOPROPANOL%20%20EN.pdf.
  • 18. Ribeiro R.P.P.L., Grande C.A., Rodrigues A.E., 2014. Electric swing adsorption for gas separation and purification:a review.Sep. Sci. Technol., 49, 1985–2002. DOI:10.1080/01496395.2014.915854.
  • 19. Subrenat A., Le Cloirec P., Blanc P.E., 2000. Removal of VOC by adsorption-desorption cycles using activated car-boncloth filter: RegenerationbyJoule effect.Adsorpt. Sci. Technol., 361–365. DOI:10.1142/9789812793331_0072.
  • 20. Subrenat A., Le Cloirec P., 2006. Volatile organic compound (VOC) removal by adsorption onto activated car-bon fiber cloth and electrothermal desorption: An industrial application.Chem. Eng. Commun., 193, 478–486.DOI:10.1080/00986440500191768.
  • 21. Supersorbon K40 – Technical Data Sheet, Donau Carbon GmbH & COKG.Yaws C.L., 2003.
  • 22. Yaws’ Handbook of thermodynamic and physical properties of chemical compounds. Knovel.
  • 23. Yu F.D., Luo L.G., Grevillot G., 2007. Electrothermal swing adsorption of toluene on an activated carbon monolith– experiments and parametric theoretical study.Chem. Eng. Process, 46, 70–81. DOI:10.1016/j.cep.2006.04.008.
  • 24. Zou N., Nie Q., Zhang X., Zhang G., Wang J., Zhang P., 2019. Electrothermal regeneration by Joule heat ef-fect on carbon cloth based MnO2catalyst for long-term formaldehyde removal.Chem. Eng. J., 357, 1–10.DOI:10.1016/j.cej.2018.09.117.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fcc1e354-4e7a-493c-bb9b-f009e63a73ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.