PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the Performance of Mg/Cr LDH by Forming Metal Oxides Mg/Cr-Ni Using Coprecipitation Method as Adsorbent for Cationic Dyes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aimed to determine the adsorption capacity of rhodamine-B (Rh-B) and methylene blue (MB) on Mg/Cr-Ni adsorbents. The Mg/Cr-Ni adsorbent was synthesized by the coprecipitation method. The results of the characterization of Mg/Cr-Ni using XRD analysis showed the formation of oxides at an angle of 2θ = 31.726°, 33°, and 45.44°. The surface area of Mg/Cr-Ni is 23.139 m2/g. The adsorption capacity test for Mg/Cr-Ni for Rh-B and MB were 85.470 mg/g and 166.667 mg/g, respectively. The adsorption kinetics model followed the pseudo second order (PSO). The adsorption process is endothermic and occurs spontaneously at any temperature. Mg/CrNi showed stability in the adsorption process of Rh-B and MB for 5 regeneration cycles.
Słowa kluczowe
Rocznik
Strony
67--74
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
  • Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
  • Magister Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
  • Research Center of Inorganic Materials and Complexes, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
autor
  • Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30662, Indonesia
  • Graduate School of Faculty Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
  • Research Center of Inorganic Materials and Complexes, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, Indonesia
Bibliografia
  • 1. Amin M.T., Alazba A.A., Shafiq M. 2020. LDH of NiZnFe and Its Composites with Carbon Nanotubes and Data-Palm Biochar with Efficient Adsorption Capacity for RB5 Dye from Aqueous Solutions: Isotherm, Kinetic, and Thermodynamics Studies. Current Applied Physics, 1–11.
  • 2. Badri, Fousty A., Siregar P.M.S.B.N., et al. 2021. Mg-Al/Biochar Composite with Stable Structure for Malachite Green Adsorption from Aqueous Solutions.” Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 149–160.
  • 3. Badri F.A., Palapa N.R., et al. 2021. Mg-Cr Layered Double Hydroxide with Intercalated Oxalic Anion for Removal Cationic Dyes Rhodamine B and Methylene Blue. Journal of Environmental Treatment Techniques, 9(2), 383–391.
  • 4. Buaphean T., Ketwongsa T., Piyamongkala K. 2017. Coagulation of Chitosan Solution in Commercial Detergent as Adsorbent for Sorption Methylene Blue Dye. Solid State Phenomena, 266, 122–127.
  • 5. Conrad Enenebeaku K. et al. 2016. Adsorption of Congo Red Dye from Aqueous Solution Using Agricultural Waste. IOSR Journal of Applied Chemistry (IOSR-JAC), 9(9), 39–51.
  • 6. Dotto G.L. et al. 2015. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. Journal of Colloid and Interface Science, 446, 133–140.
  • 7. Jain N., Dwivedi M.K., Waskle A. 2016. Adsorption of Methylene Blue Dye from Industrial Effluents Using Coal Fly Ash. International Journal of Advanced Engineering Research and Science (IJAERS), 3(4), 9–16.
  • 8. Juleanti, Novie et al. 2021. The Capability of Biochar-Based CaAl and MgAl Composite Materials as Adsorbent for Removal Cr ( VI ) in Aqueous Solution. Science and Technology Indonesia, 6(3), 156–165.
  • 9. Li Z. et al. 2020. Adsorption of Congo Red and Methylene Blue Dyes on an Ashitaba Waste and a Walnut Shell-Based Activated Carbon from Aqueous Solutions : Experiments, Characterization and Physical Interpretations. Chemical Engineering Journal, 388(January), 124263. https://doi.org/10.1016/j.cej.2020.124263.
  • 10. Liu Q., Pan C. 2012. A Novel Route to Treat Wastewater Containing Cationic Dyes. Taylor & Francis, 47(4), 630–635.
  • 11. Lv X, et al. 2019. Nanoscale Zero Valent Iron Supported on MgAl-LDH-Decorated Reduced Graphene Oxide: Enhanced Performance in Cr(VI) Removal, Mechanism and Regeneration. Journal of Hazardous Materials, 373(December 2018), 176–186. https://doi.org/10.1016/j.jhazmat.2019.03.091
  • 12. Marques B.S. et al. 2020. Ca–Al, Ni–Al and Zn–Al LDH Powders as Efficient Materials to Treat Synthetic Effluents Containing o-Nitrophenol. Journal of Alloys and Compounds, 838(2020), 155628.
  • 13. Nkutha S.C., Shooto N.D., Naidoo E.B. 2020. Adsorption Studies of Methylene Blue and Lead Ions from Aqueous Solution by Using Mesoporous Coral Limestones. South African Journal of Chemical Engineering, 34, 151–157.
  • 14. Normah et al. 2021. The Ability of Composite Ni/ Al-Carbon Based Material toward Readsorption of Iron(II) in Aqueous Solution. Science and Technology Indonesia, 6(3), 156–165.
  • 15. Patil M.A., Shinde J.K., Jadhav A.L., Deshpande S.R. 2017. Adsorption of Methylene Blue in Waste Water by Low Cost Adsorbent Rice Husk. International Journal of Engineering Research and Technology, 10(1), 246–252.
  • 16. Sagita, Primi C., Nulandaya L., Kurniawan Y.S. 2021. Efficient and Low-Cost Removal of Methylene Blue Using Activated Natural Kaolinite Material. Journal of Multidisciplinary Applied Natural Science, 1(2), 69–77.
  • 17. Shi Z. et al. 2020. Removal of Methylene Blue from Aqueous Solution Using Mg-Fe, Zn-Fe, MnFe Layered Double Hydroxide. Water Science and Technology, 81(12), 2522–2532.
  • 18. Siregar P.M.S.B.N. et al. 2022. Layered Double Hydroxide/C (C=Humic Acid;Hydrochar) As Adsorbents of Cr(VI) Patimah. Science and Technology Indonesia, 7(1), 41–48.
  • 19. Taman R., Ossman M.E., Mansour M.S., Farag A. 2018. Metal Oxide Nano-Particles as an Adsorbent for Removal of Heavy Metals. Advanced Chemical Engineering, 5(3), 1–8.
  • 20. Wan Ngah W.S., Teong L.C., Hanafiah M.A.K.M. 2011. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydrate Polymers, 83(4), 1446–1456.
  • 21. Wang P., Yan T., Wang L. 2013. Removal of Congo Red from Aqueous Solution Using Magnetic Chitosan Composite Microparticles. BioResources, 8(4), 6026–6043.
  • 22. Wei W. et al. 2015. Fast Removal of Methylene Blue from Aqueous Solution by Adsorption Onto Poorly Crystalline Hydroxyapatite Nanoparticles. Digest Journal of Nanomaterials and Biostructures, 10(4), 1343–1363.
  • 23. Wijaya A. et al. 2021. Innovative Modified of Cu-Al / C (C = Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution, 6(4), 228–234.
  • 24. Xu H., Zhang P., Zhou S.Y., Jia Q. 2020. Fullerene Functionalized Magnetic Molecularly Imprinted Polymer: Synthesis, Characterization and Application for Efficient Adsorption of Methylene Blue. Chinese Journal of Analytical Chemistry, 48(9), e20107–e20113. http://dx.doi.org/10.1016/ S1872-2040(20)60045-7
  • 25. Zhang Y. et al. 2014. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash. BioMed Research International, 2014, 1–10.
  • 26. Zheng X. et al. 2018. Efficient Removal of Anionic Dye (Congo Red) by Dialdehyde Microfibrillated Cellulose/Chitosan Composite Film with Significantly Improved Stability in Dye Solution. International Journal of Biological Macromolecules, 107, 283–289.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc3ec2d9-b57e-49cd-8206-5609955d8a71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.