PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical diagnostics of a single evaporating droplet using fast parallel computing on graphics processing units

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report on the first application of the graphics processing units (GPUs) accelerated computing technology to improve performance of numerical methods used for the optical characterization of evaporating microdroplets. Single microdroplets of various liquids with different volatility and molecular weight (glycerine, glycols, water, etc.), as well as mixtures of liquids and diverse suspensions evaporate inside the electrodynamic trap under the chosen temperature and composition of atmosphere. The series of scattering patterns recorded from the evaporating microdroplets are processed by fitting complete Mie theory predictions with gradientless lookup table method. We showed that computations on GPUs can be effectively applied to inverse scattering problems. In particular, our technique accelerated calculations of the Mie scattering theory on a single-core processor in a Matlab environment over 800 times and almost 100 times comparing to the corresponding code in C language. Additionally, we overcame problems of the time-consuming data post-processing when some of the parameters (particularly the refractive index) of an investigated liquid are uncertain. Our program allows us to track the parameters characterizing the evaporating droplet nearly simultaneously with the progress of evaporation.
Twórcy
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02–668 Warsaw, Poland
Bibliografia
  • 1. T. Nousiainen, “Optical modeling of mineral dust particles: A review”, J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009).
  • 2. T. Bond and R. Bergstrom, “Light absorption by carbonaceous particles: an investigative review”, Aerosol Sci. Technol. 40, 27–67 (2006).
  • 3. F. Onofri, M. Woźniak, and S. Barbosa, “On the optical characterisation of nanoparticle and their aggregates in plasma systems”, Contrib. Plasma Phys. 51, 228–236 (2011).
  • 4. R. Hołyst, M. Litniewski, D. Jakubczyk, K. Kolwas, M. Kolwas, K. Kowalski, S. Migacz, S. Palesa, and M. Zientara, “Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations”, Rep. Prog. Phys. 76, 034601–034620 (2013).
  • 5. G. Derkachov, K. Kolwas, D. Jakubczyk, M. Zientara, and M. Kolwas, “Drying of a microdroplet of water suspension of nanoparticles: from surface aggregates to microcrystal”, J. Phys. Chem. C 112, 16919–16923 (2008).
  • 6. G. Derkachov, D. Jakubczyk, M. Woźniak, J. Archer, and M. Kolwas, “High precision temperature determination of evaporating light-absorbing and nonlight-absorbing droplets”, J. Phys. Chem. B 118, 12566–12574 (2014).
  • 7. P.K. Jain, K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine”, J. Phys. Chem. B 110, 7238–7248 (2006).
  • 8. K. Kolwas, A. Derkachova, and D. Jakubczyk, “Tailoring plasmon resonances in metal nanospheres for optical diagnostics of molecules and cells”, in Nanomedicine and Tissue Engineering, State of the Art and Recent Trends, Apple Academic Press 2015.
  • 9. K. Kolwas and A. Derkachova, “Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates”, Opto−Electr. Rev. 18, 429–437 (2010).
  • 10. M. Salerno, J.R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F.R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology”, Opto−Electr. Rev. 10, 217–224 (2002).
  • 11. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley−VCH, 2007.
  • 12. D. Efremenko, D. Loyola, A. Doicu, and R. Spurr, “Multi−core−cpu and gpuaccelerated radiative transfer models based on the discrete ordinate method”, Comput. Phys. Commun. 185, 3079–3089 (2014).
  • 13. Y. Eremin and T. Wriedt, “New scheme of the discrete sources method for light scattering analysis of a particle breaking interface”, Comput. Phys. Commun. 185, 3141–3150 (2014).
  • 14. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösugen, Ann. Phys. 330, 377–445 (1908). (IN GERMAN).
  • 15. W.J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast, Vector−Speed Computer Codes”, NCAR Technical Note NCAR/TN−140+STR, National Center for Atmospheric Research, Boulder, Colorado. 80307, (1979).
  • 16. H. Du, “Mie−scattering calculation”, Appl. Opt. 43, 1951–1956 (2004).
  • 17. J. Shen, “Algorithm of numerical calculation on Lorentz Mie Theory”, PIERS Online 1, 691–694 (2005).
  • 18. A. Gogoi, A. Choudhury, and G. Ahmed, “Mie scattering computation of spherical particles with very large size parameters using an improved program with variable speed and accuracy”, J. Mod. Opt. 57, 2192–2202 (2010).
  • 19. D. Jakubczyk, G. Derkachov, M. Kolwas, and K. Kolwas, “Combining weighting and Scatterometry: application to a le vitated droplet of suspension”, J. Quant. Spectrosc. Radiat. Transfer 125, 99–104 (2013).
  • 20. M. Kolwas, D. Jakubczyk, G. Derkachov, and K. Kolwas, “Interaction of optical Whispering Gallery Modes with the surface layer of evaporating droplet of suspension”, J. Quant. Spectrosc. Radiat. Transfer 131, 138–145 (2013).
  • 21. M. Kolwas, K. Kolwas, D. Jakubczyk, and G. Derkachov, “Surface diagnostics of evaporating droplet of nanospheres suspension; Fano interference and surface pressure”, Phys. Chem. Chem. Phys. 17, 6881–6888 (2015).
  • 22. CUDA, CUDA Toolkit Documentation (2013). URL https:// developer.nvidia.com/cuda-toolkit
  • 23. D. Luebke, “CUDA: scalable parallel programming for high−performance scientific computing”, 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 836–838 (2008).
  • 24. Q. Nguyen, V. Dang, O. Kilic, and E. El-Araby, “Parallelizing Fast Multipole Method for large-scale electromagnetic problems using GPU clusters”, IEEE Antennas Wirel. Propag. Lett. 12, 868–871 (2013).
  • 25. G. Iadarola, C. Forestiere, L. Dal Negro, F. Villone, and G. Miano, “GPUaccelerated T-matrix algorithm for light-scattering simulations”, J. Comput. Phys. 231 5640–5652 (2012).
  • 26. D. De Donno, A. Esposito, G.Monti, and L. Tarricone, “MPIE/ MoMacceleration with a general-purpose graphics processing unit”, IEEE Trans. Microwave Theory Tech. 60, 2693–2701 (2012).
  • 27. S. Li, R. Chang, A. Boag, and V. Lomakin, “Fast Electromagnetic Integralequation Solvers on Graphics Processing Units”, IEEE Antennas Propag. Mag. 54, 71–87 (2012).
  • 28. E. Lezar and D. Davidson, “GPU acceleration of electromagnetic scattering analysis using the Method of Moments”, Int. Conf. Electromagnetics in Advanced Applications 60, 452–455 (2011).
  • 29. W. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays, Cambridge University Press 1999. 30. K. Yu, J. Yang, and Yi Y. Zuo, “Automated droplet manipulation using closed−loop axisymmetric drop shape analysis”, Langmuir 32, 4820-4826 (2016).
  • 30. K. Yu, J. Yang, and Yi Y. Zuo, “Automated droplet manipulation using closed−loop axisymmetric drop shape analysis”, Langmuir 32, 4820-4826 (2016).
  • 31. D. Jakubczyk, M. Zientara, K. Kolwas, and M. Kolwas, “Temperature dependence of evaporation coefficient for water measured in droplets in nitrogen under atmospheric pressure”, Atm. Sci. 64, 996–1004 (2007).
  • 32. D. Duft, T. Achtzehn, R. Müller, B. Huber, and T. Leisner, “Rayleigh jets from levitated microdroplets”, Nature 421, 128 (2003).
  • 33. R. Xu, Particle Characterization: Light Scattering Methods, Kluwert Academic Publisher, New York, 2002.
  • 34. W.J. Wiscombe, “Improved mie scattering algorithms”, Appl. Opt. 19, 1505–1509 (1980).
  • 35. M. Quinten, Optical Properties of Nanoparticle Systems. Mie and Beyond, Wiley-VCH, 2011.
  • 36. P. C. Waterman, “Matrix formulation of electromagnetic scattering”, Proc. IEEE 53, 805–812 (1965).
  • 37. B. Draine and P. Flatau, “Discrete-Dipole Approximation for scattering calculations”, J. Opt. Soc. Am. A 11 1491–1499 (1994).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fa936782-7192-4a28-afe2-5d2de9352286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.