Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study highlights the advancement of rail transport, focusing on the distinct requirements of high-speed passenger transit and robust freight operations. Passenger rails emphasize geometric precision, such as straightness and minimal dimensional deviation, to reduce vibrations and improve safety and comfort. Freight rails, in contrast, require exceptional durability to withstand high axial loads, plastic deformation, and abrasive wear due to heavy tonnage. A key parameter for all rail types is the stress intensity factor (KIc), which ensures rail integrity by preventing crack propagation. The study confirmed that tested rail types (60E2, 54E4, and 49E1) meet the EN 13674-1 standard for mechanical properties, indicating effective heat treatment. Residual stress levels were found to be low, particularly in lighter rails, enhancing resistance to brittle fracture. All rails exhibited a fine, fully pearlitic microstructure with cementite lamellae spacing between 92 and 106 nm, contributing to mechanical strength and durability. The low residual stress and high KIc support extended rail life and safety, as larger critical crack sizes minimize fracture risk. These findings underline the reliability and safety of rail materials under operational conditions, with consistent pearlitic structures and optimized stress properties ensuring robust performance.
Wydawca
Rocznik
Tom
Strony
349–364
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
- ArcelorMittal Poland S.A. Branch in Dąbrowa Górnicza, Aleja Józefa Piłsudskiego 92, 41-303 Dąbrowa Górnicza, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Zygmunta Krasińskiego 8, 40-019 Katowice, Poland
autor
- Center for Metallurgical Technologies, Łukasiewicz Research Network - Upper Silesian Institute of Technology, ul. Karola Miarki 12-14, 44-100 Gliwice, Poland
autor
- Center for Metallurgical Technologies, Łukasiewicz Research Network - Upper Silesian Institute of Technology, ul. Karola Miarki 12-14, 44-100 Gliwice, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Zygmunta Krasińskiego 8, 40-019 Katowice, Poland
- Center for Advanced Material Technologies, Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
- 1. Żak S., Bartyzel J., Kasprowicz J. Railway rails for heavy-duty tracks manufactured at Huta Katowice S.A. Hutnik – Wiadomości Hutnicze, 2001; 68(11): 404–408.
- 2. Bartyzel J., Liszka S. Research on the mechanism of wear of railway rails under conditions of high operational loads. Published materials of the 12th Scientific and Technical Conference Railway Roads 2003; 59–70.
- 3. European Standard EN 13674-1:2011+A1:2017 Railway applications – Track – Rail Part 1: Vignole railway rails 46 kg/m and above.
- 4. Guericke W., Heller W., Kasprowicz J., Weiße M. Verbesserte Bruchsicherheit von Schienen durch optimiertes Rollenrichten. ETR Eisenbahntechnische Rundschau, 2001; 50(9): 541–551.
- 5. Żak S., Woźniak D. Controlling the state of residual stresses in railway rails by modifying pass design of straightening rollers. Arch. Metall. Mater. 2023; 68(1): 57–70. https://doi.org/10.24425/amm.2023.141473.
- 6. Żak S., Woźniak D. The influence of changes in roll pass design on the state of residual stresses in railway rails – summary. Arch. Metall. Mater. 2023; 68(2): 439–446. https://doi.org/10.24425/amm.2024.147815.
- 7. Jericho E., Weiße M. Beitrag der Eigenspannungen zum Gebrauchsverhalten von Schienen. Internationales Symposium Schienenfehler. 16–17 November 2000, Brandenburg an der Havel, 10–1 ÷ 10–9.
- 8. Urbańczyk E., Kasprowicz J. Steels intended for the production of railway rails. Rail conference, Warsaw 2005.
- 9. Kuziak R., Molenda R., Pietryka J., Zygmunt T., Potwora A. A new method of head hardening of rail profiles. Hutnik – Wiadomości Hutnicze, 2003; 70(2): 53–59.
- 10. Zygmunt T., Kasprowicz J., Żak S. Rail steel grade B1000 produced by ArcelorMittal Poland S.A. Hutnik – Wiadomości Hutnicze, 2013; 80(10): 686–691.
- 11. Żak S., Zygmunt T., Kasprowicz J., Kozera K. A new steel grade for grooved rails. Technika Transportu Szynowego, 2018; 3: 41–44.
- 12. Herian J., Aniołek K. Selected aspects of shaping of a rail steel microstructure and its influence on a resistance to abrasive wear. Hutnik – Wiadomości Hutnicze, 2007; 74(5): 251–255.
- 13. Christodoulou P., T Kermanidis A.T., Haidemenopoulos G.N. Fatigue and fracture behaviour of pearlitic Grade 900A steel used in railway applications. Theoretical and Applied Fracture Mechanics 2016, 83: 51–59. https://doi.org/10.1016/j.tafmec.2015.12.017.
- 14. Li X.C., Ding H.H., Wang W.J., Guo J., Liu Q.Y., Zhou Z.R. Investigation on the relationship between microstructure and wear characteristic of rail materials. Tribology International, vol. 163, November 2021; 107152: 1–15.
- 15. ASTM E112-13. Standard Test Methods for Determining Average Grain Size. ASTM International 2014.
- 16. Fischer S., Harangozó D., Németh D., Kocsis B., Sysyn M., Kurhan D., & Brautigam, A. Investigation of heat-affected zones of thermite rail welding. Facta Universitatis, Series: Mechanical Engineering, 2023; 1–22.
- 17. Sevillano J.G., 1979. On the yield and flow stress of lamellar pearlite. In Strength of Metals and Alloys. Pergamon, p. 819-824.
- 18. Ray K.K., Mondal D. The effect of interlamellar spacing on strength of pearlite in annealed eutectoid and hypoeutectoid plain carbon steels. Acta Metallurgica et Materialia, 1991; 39(10): 2201–2208. https://doi.org/10.1016/0956-7151(91)90002-I.
- 19. Daymond M.R., Priesmeyer H.G. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modeling. Acta Materialia 2002; 50(6): 1613–1626.
- 20. Modi O., Desmukh N., Mondal D., Jha A., Yegneswaran A., Khaira H. Effect of interlamellar spacing on the mechanical properties of 0.65% C steel. Mater. Charact. 2001; 46: 347–352. https://doi.org/10.1016/S1044-5803(00)00113-3.
- 21. Jabłońska M., Lewandowski F., Chmiela B., Gronostajski Z. Advanced Heat Treatment of Pearlitic Rail Steel. Materials (Basel), 2023, Sep 27; 16(19): 6430, 1–16. https://doi.org/10.3390/ma16196430. PMID: 37834570; PMCID: PMC10573705.
- 22. Grain Micrograph Processing and Analysis Tool by Mark Henning, https://www.mark-henning.de/mhm_about_eng.php.
- 23. PN-EN ISO 6506-1:2014-12. Metals – Brinell hardness measurement – Part 1: Test method.
- 24. PN-EN ISO 6892-1:2020-05. Metals – Tensile test – Part 1: Room Temperature Test Method.
- 25. ISO 12108:2018. Metallic materials – Fatigue testing – Fatigue crack growth method.
- 26. ASTM E399-22. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness of Metallic Materials, 2023.
- 27. Inal K., Lebrun J.L., Belassel M. Second-order stresses and strains in heterogeneous steels: Self-consistent modeling and X-ray diffraction analysis. Met. Mater. Trans. A 2004; 35: 2361–2369.
- 28. Binder M., Mezhuyev V., Tschandl M., IEEE Engineering Management Review, 2023; 51(2). Predictive Maintenance for Railway Domain: A Systematic Literature Review, 120–140.
- 29. Babachenko A., Podolskyi R., Kononenko A., Safronova E. Investigation of the influence of heat treatment modes of experimental steels for new generation railway rails on mechanical properties. Fundamental and applied problems of ferrous metallurgy, 2020; 34: 247–255. https://doi.org/10.52150/2522-9117-2020-34-247-255.
- 30. Ackert R.J., Nott M.A. Accelerated water cooling of railway rails in-line with the hot rolling mill. Proc. Symp. Accelerated Cooling of Rolled Steels. Eds. Ruddle G.E., Crawley A.F. Winnipeg: Pergamon Press, 1987; 359–372.
- 31. Sahay S.S., Mohapatra G., Totten G.E. Overview of pearlitic rail steels: accelerated cooling, quenching, microstructure and mechanical properties. Journal of ASTM International, 2009; 6: 1–26.
- 32. Li G., Liu Z., Chen L., Hou X. Numerical calculation of the comprehensive heat transfer coefficient on the surface of rail in the spray cooling process. Journal of Metallurgical Engineering, 2015; 13–17.
- 33. Snitko Iu.P., Galyamov A.Kh. The current state of rail production abroad. Materials of the Jubilee Railway Commission 2002, Novokuznetsk. 10–30.
- 34. Macek W., Sampath D., Pejkowski Ł., Zak K. A brief note on monotonic and fatigue fracture events investigation of thin-walled tubular austenitic steel specimens via fracture surface topography analysis (FRASTA). https://doi.org/10.1016/j.engfailanal.2022.106048.
- 35. Macek W., Kopec M., Laska A., Kowalewski Z.L. Entire fracture surface topography parameters for fatigue life assessment of 10H2M steel. Journal of Constructional Steel Research, 2024. https://doi.org/10.1016/j.jcsr.2024.108890.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f88a183f-e0e7-4096-a825-4cdff0c53cd8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.