PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

X-ray Microtomography under Loading and 3D-Volume Digital Image Correlation : A Review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this review paper the synergistic combination of X-ray microtomography, in situ mechanical tests on material samples and full-field kinematic measurements by 3D-Volume Digital Image Correlation is discussed. First, basic features are outlined, concerning X-ray microtomography by either laboratory sources or synchrotron radiation. The main equations for 3D-Volume Digital Image Correlation are then presented, and different provisions regularizing the ill-posed problem of motion estimation are outlined. Thereafter, a survey of the state of the art is provided, with reference to a variety of biological and engineering materials. Limitations and perspectives of the proposed methodology in diverse applications are highlighted. The rapid growth of this research topic is emphasized, due to the truly multi-disciplinary vocation, the synergy between algorithmic and technological solutions, a fusion of experiments and numerical methods.
Wydawca
Rocznik
Strony
171--197
Opis fizyczny
Bibliogr. 90 poz., fot., rys.
Twórcy
autor
  • Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
autor
  • Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
autor
  • Universita Politecnica delle Marche, Di.S.C.O.-Sezione di Biochimica, Biologia e Fisica, Via Brecce Bianche, 60131 Ancona, Italy
Bibliografia
  • [1] http://www.lightsources.org/light-source-facility-information.
  • [2] http://www.nist.gov/pml/data/xraycoef.
  • [3] Adrien, J., Maire, E., Gimenez, N., Sauvant-Moynot, V.: Experimental study of the compression behavior of syntactic foams by in situ X-ray tomography, Acta Materialia, 55(5), 2007, 1667–1679.
  • [4] Agulleiro, J., Vázquez, F., Garzón, E., Fernández, J.: Hybrid computing: CPU-GPU co-processing and its application to tomographic reconstruction, Ultramicroscopy, 115, 2012, 109–114.
  • [5] Andreaus, U., Colloca, M., Iacoviello, D.: Coupling image processing and stress analysis for damage identification in a human premolar tooth, Computer Methods and Programs in Biomedicine, 103(2), 2011, 61–73.
  • [6] Banhart, J., Ed.: Advanced Tomographic Methods in Materials Research and Engineering, Oxford University Press, USA, 2008, ISBN 0199213240.
  • [7] Bay, B. K., Smith, T. S., Fyhrie, D. P., Saad, M.: Digital volume correlation: three-dimensional strain mapping using X-ray tomography, Experimental Mechanics, 39(3), 1999, 217–226.
  • [8] Bhuiyan, I. U., Mouzon, J., Forsberg, F., Forsmo, S. P. E., Sjödahl, M., Hedlund, J.: Consideration of Xray microtomography to quantitatively determine the size distribution of bubble cavities in iron ore pellets, Powder Technology, 233, 2013, 312–318.
  • [9] Bolzon, G., Fedele, R., Maier, G.: Parameter identification of a cohesive crack model by Kalman Filter, Computer Methods in Applied Mechanics and Engineering, 191, 2002, 2947–2871.
  • [10] Bonnet, M., Frangi, A.: Analyse des solides déformables par la méthode des éléments finis, Les Editions de l’Ecole Polytechnique, Palaiseau (France), 2006.
  • [11] Bonse, U., Busch, F.: X-ray computed microtomography (CT) using synchrotron radiation (SR), Progress in Biophysics and Molecular Biology, 65(1-2), 1999, 133–169.
  • [12] Bornert, M., Vales, F., Gharbi, H., Minh, D. N.: Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks, Strain, 46(1), 2010, 33–46.
  • [13] Brault, R., Germaneau, A., Dupré, J. C., Doumalin, P., Mistou, S., Fazzini, M.: In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation, Experimental Mechanics, 53(7), 2013, 1143–1151.
  • [14] Briggs, W., Henson, V., McCormick, S.: A multigrid tutorial, SIAM Society of Industrial and Applied Mathematics, Philadelphia, PA, USA (2nd Edition), 2000.
  • [15] Buffiere, J. Y., Maire, E., Adrien, J., Masse, J. P., Boller, E.: In Situ Experiments with X-ray Tomography: An Attractive Tool for Experimental Mechanics, Experimental Mechanics, 50(3), 2010, 289–305.
  • [16] Cancedda, R., Cedola, A., Giuliani, A., Komlev, V., Lagomarsino S., Mastrogiacomo, M., Peyrin, F., Rustichelli, F.: Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction, Biomaterials, 28, 2007, 25052524.
  • [17] Casali, F.: X-ray and Neutron Digital Radiography and Computed Tomography for Cultural Heritage, in: Physical techniques in the study of art, archeology and cultural heritage (D. Bradley, D. Creagh, Eds.), vol. 1, chapter 2, Elsevier, Amsterdam, the Netherlands, 2007, 41–124.
  • [18] Caty, O., Maire, E., Youssef, S., Bouchet, R.: Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements, Acta Materialia, 56(19), 2008, 5524–5534.
  • [19] Chen, X., Cuijpers, V., Fan, M., Frencken, J. E.: Optimal use of silver nitrate and marginal leakage at the sealant-enamel interface using micro-CT, American Journal of Dentistry, 22(5), 2009, 269–272.
  • [20] Chen, X., Cuijpers, V., Fan, M., Frencken, J. E.: Marginal leakage of two newer glass-ionomer-based sealant materials assessed using micro-CT, Journal of Dentistry, 38(19), 2010, 731–735.
  • [21] Chiang, Y. C., Rösch, P., Dabanoglu, A., Lin, C. P., Hickel, R., Kunzelmann, K. H.: Polymerization composite shrinkage evaluation with 3D deformation analysis from μ-CT images, Dental Materials, 26(3), 2010, 223–231.
  • [22] Cloetens, P., Ludwig, W., Baruchel, J., Dyck, D. V., Landuyt, J. V., Guigay, J., Schlenker, M.: Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation X-rays, Applied Physics Letters, 75(19), 1999, 2912–2914.
  • [23] David, C., Nöhammer, B., Solak, H., Ziegler, E.: Differential X-ray phase contrast imaging using a shearing interferometer, Applied Physics Letters, 81(17), 2002, 3287–3289.
  • [24] Deckman, H., Dunsmuir, J., D’Amico, K., Ferguson, S., Flannery, B.: Development of quantitative X-ray microtomography, Material Research Society Symposia Proceeding, 217, 1991, 97–110.
  • [25] Dierolf, M., Menzel, A., Thibault, P., Schneider, P., Kewish, C., Wepf, R., Bunk, O., Pfeiffer, F.: Ptychographic X-ray computed tomography at the nanoscale, Nature Letter, 467, September 2010, 436–439, doi:10.1038/nature09419.
  • [26] Doktor, T., Jiroušek, O., Kytyř, D., Zlámala, P., Jandejsek, I.: Real-time X-ray microradiographic imaging and image correlation for local strain mapping in single trabecula under mechanical load, Journal of Instrumentation, 6(11), 2011, doi:10.1088/1748–0221/6/11/C11007.
  • [27] Elliott, J. D., Dover, S. D.: X-ray microtomography, Journal of Microscopy, 126(2), 1982, 211–213.
  • [28] Espinosa, H., Hild, F., Eds.: IUTAM Symposium on Full-field Measurements and Identification in Solid Mechanics Cachan, France 4-8 July 2011, vol. 4 of Procedia IUTAM, Elsevier B.V., Dordrecht, The Netherlands, 2012.
  • [29] Fedele, R., Ciani, A., Galantucci, L., Bettuzzi, M., Andena, L.: A regularized, pyramidal multi-grid approach to global 3D-Volume Digital Image Correlation based on X-ray micro-tomography, Fundamenta Informaticae, 125(3-4), 2013, 361–376.
  • [30] Fedele, R., Galantucci, L., Ciani, A.: Global 2D Digital Image Correlation for motion estimation in a finite element framework: a variational formulation and a regularized, pyramidal, multi-grid implementation, International Journal for Numerical Methods in Engineering, 96(12), 2013, 739–762.
  • [31] Fedele, R., Galantucci, L., Ciani, A.: Motion estimation by X-ray tomography: a variational formulation for 3D-Volume DIC and a finite element implementation, in: Proceedings of Image and Signal Processing and Analysis (ISPA), 8th International Symposium. September 4-6 2013, Trieste (Italy). IEEE Xplorer Digital Library (G. Ramponi, S. Lončariá, A. Carini, K. Egiazarian, Eds.), University of Zagreb, Croatia and University of Trieste, 2013, 612–617.
  • [32] Fedele, R., Maier, G., Whelan, M.: Calibration of local constitutive models through measurements at the macroscale in heterogeneous media, Computer Methods in Applied Mechanics and Engineering, 195(37), 2006, 4971–4990.
  • [33] Fedele, R., Raka, B., Hild, F., Roux, S.: Identification of adhesive properties in GLARE laminates by Digital Image Correlation, Journal of the Mechanics and Physics of Solids, 57(7), 2009, 1003–1016.
  • [34] Feldkamp, L. A., Goldstein, S. A., Parfitt, A. M., et al.: The direct examination of three dimensional bone architecture in vitro by computed tomography, Journal of Bone and Mineral Research, 4, 1989, 3–11.
  • [35] Flannery, B. P., Deckman, H. W., Roberge, W. G., D’Amico, K. L.: Three-dimensional X-ray microtomography, Science, 237(4821), 1987, 1439–1444.
  • [36] Fornberg, B.: Generation of finite difference formulas on arbitrarily spaced grids, Mathematics of Computation, 51(184), 1988, 699–706.
  • [37] Forsberg, F., Mooser, R., Arnold, M., Hack, E., Wyss, P.: 3D micro-scale deformations of wood in bending: Synchrotron radiation μCT data analyzed with digital volume correlation, Journal of Structural Biology, 164(3), 2008, 255–262.
  • [38] Forsberg, F., Siviour, C. R.: 3D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation, Measurements Science and Technology, 20(9), 2009, doi:10.1088/0957–0233/20/9/095703.
  • [39] Frosio, I., Borghese, N.: Tomosynthesis through a time delay integration sensor, in: Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS ’07). October 26th-November 3rd 2007, Honolulu, Hawaii. IEEE Xplorer Digital Library (B. Yu, Ed.), 2007, 3823–3825.
  • [40] Gibson, L., Ashby, M. F.: Cellular solids. Structure and properties, Cambridge Solid State Science Series, Cambridge, UK (2nd Edition), 1999.
  • [41] Gokhale, N., Richards, M., Oberai, A., Barbone, P.: Simultaneous elastic image registration and elastic modulus reconstruction, IEEE International Symposium on Biomedical Imaging, 1, 2004.
  • [42] Graeff, W., Engelke, K.: Microradiography and microtomography, in: Handbook of Synchrotron Radiation (S. Ebashi, M. Koch, E. Rubenstein, Eds.), vol. 4, chapter 3, Elsevier, Amsterdam, the Netherlands, 1991, 361–405.
  • [43] Hall, S. A., Desrues, J., Viggiani, G., Bésuelle, P., Andò, E.: Experimental characterisation of (localised) deformation phenomena in granular geomaterial from sample down to inter- and intra-grain scales, Procedia IUTAM, 4, 2012, 54–65.
  • [44] Hild, F., Maire, E., Roux, S., Witz, J.: Three dimensional analysis of a compression test on stone wool, Acta Materialia, 57(11), 2009, 3310–3320.
  • [45] Hildebrand, T., Rüegsegger, P.: A new method for the model independent assessment of thickness in threedimensional images, Journal of Microscopy, 185(1), 1997, 67–75.
  • [46] Hohe, J., et al.: Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications, Materials and Design, 39, 2012, 20–32.
  • [47] Hussein, A. I., Barbone, P. E., Morgan, E. F.: Digital Volume Correlation for Study of the Mechanics of Whole Bones, Procedia IUTAM, 4, 2012, 116–125.
  • [48] Jiroušek, O., Jandejsek, I., Vavřık, D.: Evaluation of strain field in microstructures using micro-CT and digital volume correlation, Journal of Instrumentation, 6(1), January 2011, doi:10.1088/1748–0221/6/01/C01039.
  • [49] Kádár, C., Maire, E., Borbély, A., Peix, G., Lendvai, J., Rajkovits, Z.: X-ray tomography and finite element simulation of the indentation behavior of metal foams, Materials Science and Engineering A, 387-389, 2004, 321–325.
  • [50] Kak, A. C., Slaney, M.: Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.
  • [51] Ketcham, R. A., Carlson,W. D.: Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences., Computer and Geosciences, 27(4), 2001, 381–400.
  • [52] Kinney, J. H., Ryaby, J. T., Haupt, D. L., Lane, N. E.: Three-dimensional in vivo morphometry of trabecular bone in the OVX rat model of osteoporosis, Technology and Health Care, 6(5-6), 1998, 339–350.
  • [53] Leclerc, H., Périé, J. N., Roux, S., Hild, F.: Voxel-Scale Digital Volume Correlation, Experimental Mechanics, 51(4), 2011, 479–490.
  • [54] Lenoir, N., Bornert, M., Desrues, J., Bèsuelle, P., Viggiani, G.: Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rocks, Strain, 43(3), 2007, 193–205.
  • [55] Limodin, N., Réthoré, J., Buffière, J. Y., Gravouil, A., Hild, F., Roux, S.: Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images, Acta Materialia, 57(14), 2009, 4090–4101.
  • [56] Liu, L., Morgan, E. F.: Accuracy and Precision of Digital Volume Correlation in Quantifying Displacement and Strains in Trabecular Bone, Journal of Biomechanics, 40(15), 2007, 3516–3520.
  • [57] Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., Letang, J. M.: X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Composites Science and Technology, 63(16), 2003, 2431–2443.
  • [58] Maire, E., Zhou, S., Adrien, J., Dimichiel, M.: Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography, Engineering Fracture Mechanics, 78(15), 2011, 2679–2690.
  • [59] Martz, H. E., Logan, C., Schneberk, D. J., Shull, P. J.: X-ray imaging: Fundamentals, Industrial Techniques and Applications, CRC Press, Taylor and Francis Group, London, UK, 2013, ISBN 9780849397721.
  • [60] Mayo, S. C., Stevenson, A. W., Wilkins, S. W.: In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science, Materials, 5, 2012, 937–965.
  • [61] Miceli, A., Thierry, R., Flisch, A., Sennhauser, U., Casali, F., Simon, M.: Monte Carlo simulations of a high-resolution X-ray CT system for industrial applications, Nuclear Instruments and Methods in Physics Research Section A, 583, 2007, 313–323.
  • [62] Mizutani, R., Suzuki, Y.: X-ray microtomography in biology, Micron, 43(2-3), 2012, 104–115.
  • [63] Mooser, R., Forsberg, F., Hack, E., Székely, G., Sennhauser, U.: Estimation of affine transformations directly from tomographic projections in two and three dimensions, Machine Vision and Applications, 24(2), 2013, 419–434.
  • [64] Morgeneyer, T. F., Helfenb, L., Mubarak, H., Hild, F.: 3D Digital Volume Correlation of Synchrotron Radiation Laminography images of ductile crack initiation: An initial feasibility study, Experimental Mechanics, 53(4), 2013, 543–556.
  • [65] Morigi, M., Casali, F., Bettuzzi, M., Brancaccio, R., D’Errico, V.: Application of X-ray Computed Tomography to Cultural Heritage diagnostics, Applied Physics A: Materials Science & Processing, 100(3), September 2013, 653–661.
  • [66] Müller, R., Rüegsegger, P.: Morphological validation of the 3D structure of non-invasive bone biopsies, Abstracts 10th Int. Workshop on Bone Densitometry. Journal of Bone and Mineral Research, 25(2), 1994, S8–S15.
  • [67] Ohgushi, H., Goldberg, V. M., Caplan, A. I.: Repair of bone defects with marrow cells and porous ceramic. Experiments in rats, Acta Orthopaedica Scandinavica, 60(3), 1989, 334–339.
  • [68] Paganin, D., Mayo, S., Gureyev, T., Miller, P., Wilkins, S.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, Journal of Microscopy, 206(1), 2002, 33–40.
  • [69] Pan, B.: Recent Progress in Digital Image Correlation, Experimental Mechanics, 51(7), 2011, 1223–1235.
  • [70] Pan, B., Wu, D., Wang, Z.: Internal displacement and strain measurement using digital volume correlation: a least-squares framework, Measurements Science and Technology, 23(4), 2012, doi:10.1088/0957–0233/23/4/045002.
  • [71] Paulus, M. J., Gleason, S. S., Kennel, S. J., Hunsicker, P. R., Johnson, D. K.: High resolution X-ray computed tomography: an emerging tool for small animal cancer research, Neoplasia, 2(1-2), 2000, 62–70.
  • [72] Qu, H., Xu, F., Hu, X., Wang, L., Zhao, J., Zhang, Z.: A novel denoising method based on Radon transform and filtered back-projection reconstruction algorithm, Optics and Lasers in Engineering, 50, 2012, 593–598.
  • [73] van der Reijden, A., van Herk, M., Sonke, J.-J.: Motion compensated digital tomosynthesis, Radiotherapy and Oncology, 109, 2013, 398–403.
  • [74] Réthoré, J., Hild, F., Roux, S.: Shear-band capturing using a multiscale extended digital image correlation technique, Computer Methods in Applied Mechanics and Engineering, 196(49-52), 2007, 5016–5030.
  • [75] Réthoré, J., Limodin, N., Buffière, J. Y., Hild, F., Ludwig, W., Roux, S.: Digital volume correlation analyses of synchrotron tomographic images, The Journal of Strain Analysis for Engineering Design, 46(7), 2011, 683–695.
  • [76] Réthoré, J., Limodin, N., Buffière, J. Y., Roux, S., Hild, F.: Three-dimensional analysis of fatigue crack propagation using X-Ray tomography, digital volume correlation and extended finite element simulations, Procedia IUTAM, 4, 2012, 151–158.
  • [77] Roux, S., Hild, F., Viot, P., Bernard, D.: Three-dimensional image correlation from X-ray computed tomography of solid foam, Composites: Part A, 39(8), 2008, 1253–1265.
  • [78] Rüegsegger, P., Koller, B., Müller, R.: A microtomographic system for the non destructive evaluation of bone architecture, Calcified Tissue International, 58(1), 1996, 24–29.
  • [79] Russell, W. S.: Polynomial interpolation schemes for internal derivative distribution on structured grids, Applied Numerical Mathematics, 17(2), 1995, 129–171.
  • [80] Schambach, S. J., Bag, S., Schilling, L., Groden, C., Brockmann, M. A.: Application of micro-CT in small animal imaging, Methods, 50(1), 2010, 2–13.
  • [81] Sjödahl, M., Siviour, C. R., Forsberg, F.: Digital volume correlation applied to compaction of granular materials, Procedia IUTAM, 4, 2012, 179–195.
  • [82] Sutton, M. A., Orteu, J. J., Schreier, H.: Image correlation for shape, motion and deformation measurements, Springer-Verlag, Heidelberg, 2009.
  • [83] Takano, H., Suzuki, Y., Takeuchi, A.: Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics, Japanese Journal of Applied Physics, 43, 2003, L132–L134.
  • [84] Thurner, P. J., Wyss, P., Voide, R., Stauber, M., Stampanoni, M., Sennhauser, U., Müller, R.: Time-lapsed investigation of three-dimensional failure and damage accumulation in trabecular bone using synchrotron light, Bone, 39(2), 2006, 289–299.
  • [85] Verhulp, E., van Rietbergen, B., Huiskes, R.: A three-dimensional digital image correlation technique for strain measurements in microstructures, Journal of Biomechanics, 37(9), 2004, 1313–1320.
  • [86] Webb, A. G.: Introduction to Biomedical Imaging, IEEE Press Series on Biomedical Engineering Sponsored by the IEEE Engineering in Medicine and Biology Society, Wiley-IEEE Press, 2003.
  • [87] Wellington, S. L., Vinegar, H. J.: X-ray computerized tomography, Journal of Petroleum Technology, 39(8), 1987, 885–898.
  • [88] Withers, P.: X-ray nanotomography, Materials Today, 10(12), 2007, 26–34 doi:10.1016/S1369–7021(07) 70305–X.
  • [89] Ying, Z., Naidu, R., Crawford, C.: Dual energy computed tomography for explosive detection, Journal of X-Ray Science and Technology, 14(7), 2006, 235–256.
  • [90] Youssef, S., Maire, E., Gaertner, R.: Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Materialia, 53(3), 2005, 719–730.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f869c58b-342d-4fb7-b800-108fd2cfc39c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.