PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of the mass inertia moment in an electromechanical system based on wavelet–neural method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of testing of a complex electromechanical system model. These results have been obtained for accepted in simulations the method of identifying an inertia moment of reduced masses on shaft of induction motor drive during the changes of a backlash zone width. The effectiveness of correct diagnostic conclusions enables coefficients analysis of testing signals wavelet expansion as well as weights of a supervised learning neural network. The earlier fault detection of five important state variables, which describe physical quantities of chosen complex electro-mechanical system has been verified for its correctness during the backlash zone width monitoring in the early stage of its gradual rise. The proposed here algorithm with mass inertia moment changes has proved to be an effective diagnostic method in the area of system changeable dynamic conditions and this has been shown in the resulting changes of backlash zone width.
Rocznik
Strony
96--111
Opis fizyczny
Bibliogr. 9 poz., fig., tab.
Twórcy
  • Electrical School No. 1 in Krakow, Kamieńskiego 49, 30-644 Kraków,
  • Cracow University of Technology, Warszawska 24, 31-155 Kraków
  • The University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biała
Bibliografia
  • [1] Doniec, R. (2010). Wykorzystanie metod sztucznej inteligencji do regulacji poziomu insuliny w organizmie człowieka (doctoral dissertation). Wydawnictwo Politechniki Śląskiej, Gliwice.
  • [2] Duda, J. T. (2007). Pozyskiwanie wzorców diagnostycznych w komputerowych analizach sprawności urządzeń. In J. Korbicz, K. Patan, & M. Kowal (Eds.), Diagnostyka procesów i systemów (pp. 1–16). Warszawa: Akademicka Oficyna Wydawnicza EXIT.
  • [3] Farronato, L., Monti A., Ponci, F., Ferrero, A., Cristaldi, L., & Lazzaroni, M. (2005). Virtual system Fault Models for Training Fuzzy-Wavelet Identifiers in Electrical Drive Diagnosis: an Experimental Validation. In IMTC 2005 Proceedings of the IEEE. Instrumentation and Measurement Technology Conference (pp. 2310–2315). Ottawa: IEEE. doi: 10.1109/ IMTC.2005.1604589
  • [4] Ishkova, I., & Vitek, O. (2016). Detection and Classification of faults in induction motor by means of motor current signature analysis and stray flux monitoring. Przegląd Elektrotechniczny, 92(4), 166–170. doi: 10.15199/48.2016.04.36
  • [5] Korbicz, J. (2002). Diagnostyka procesów. Modele. Metody sztucznej inteligencji. Zastosowania. Warszawa: WNT.
  • [6] Kowalski, Cz. (2006). Zastosowanie analizy falkowej w diagnostyce silników indukcyjnych. Przegląd Elektrotechniczny, 82(1), 21–26.
  • [7] Rusiecki, A. (2007). Algorytmy uczenia sieci neuronowych odporne na błędy w danych (doctoral dissertation). Politechnika Wrocławska, Wrocław.
  • [8] Wolkiewicz, M., & Kowalski, Cz. (2015). Diagnostyka uszkodzeń uzwojeń stojana silnika indukcyjnego z wykorzystaniem dyskretnej transformaty falkowej obwiedni prądu stojana. Maszyny elektryczne: zeszyty problemowe, 3(107), 13–18.
  • [9] Yayakumar, K., Thangavel, S., & Elango, M. K. (2015). Backpropagation Algorithm for Bearing Fault Detection of Induction Motor Drive Using Wavelet Packet Decomposition. International Journal of Applied Engineering Research, 10(10), 26191–26208.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f61695dc-be1b-494a-b88a-05a25a6acc1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.