PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes in paleo-circulation and the distribution of ammonite faunas at the Coniacian–Santonian transition in central Poland and western Ukraine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ammonite distribution patterns and carbon and oxygen stable isotopes from the Lipnik-Kije (Poland) and Dubovcy (Ukraine) sections allow us to propose a model of sea water paleo-circulation in central Europe for the Coniacian-Santonian interval. The tectonic evolution of the south-eastern part of Poland, and expansion of the Krukienic Island areas, appears to have been one of the most important factors affecting paleotemperatures and the distribution of ammonite faunas in the shallow, epicontinental sea in this part of Europe. In the Lipnik-Kije section, low-latitude Tethyan ammonites, especially of the genera Nowakites, Parapuzosia and Saghalinites, are mixed with the cold water loving ammonite genus Kitchinites in the Lower Santonian. In the Dubovcy section (western Ukraine), Tethyan ammonites disappear abruptly in the earliest Santonian, giving place to temperate ammonites of the Kitchinites group in the early Early Santonian and to Boreal belemnites of the genus Gonioteuthis in the Middle and Late Santonian. Despite evidence for the effects of diagenesis in both sections, bulk-rock δ18O records from the limestones support higher seawater paleotemperatures in the Polish sea and cooler conditions in the western Ukraine. The proposed paleo-circulation model and paleotemperature distribution across Europe is supported independently by changes in faunal and nannoflora evidence (ammonites, foraminifera and nannoplankton), and rather unexpectedly with the bulk δ18O data. These data allow the recognition of the end-Coniacian–Early Santonian cooling event, resulting from cold currents flowing from the north, which is traceable, with different magnitude, in several European sections. Facies changes in both sections are related to the input of terrigenous material, and linked to Subhercynian tectonic movements which affected the eastern (Ukrainian) and central (Holy Cross) segment of the Mid Polish Trough at different times. Uplift and sediment input moved westwards through time. Clastic input is detectable at the Coniacian–Santonian boundary in the Ukrainian segment. Similar facies changes reached the Holy Cross segment in Poland distinctly later, somewhen in the Middle Santonian. It is likely that tectonics together with paleo-circulation changes markedly restricted or even cut-off the western Ukraine area from Tethyan ocean influences in the Early Santonian.
Rocznik
Strony
107--124
Opis fizyczny
Bibliogr. 71 poz., for., rys.
Twórcy
autor
  • Institute of Geology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool L69 3GP, United Kingdom
Bibliografia
  • 1. Arthur, M.A., Dean, W.E. and Schlanger, S.O. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In: E.T. Sundquist and W.S. Broecker (Eds), The Carbon Cycle and Atmospheric CO2: Natural Variations, Archaean to Present, 504–529. Geophysical Monograph Series, 32, 627 pp. AGU. Washington, D.C.
  • 2. Arthur, M.A., Jenkyns H.C., Brumsack H.J. and Schlanger S.O. 1990. Stratigraphy, geochemistry and paleoceanography of organic-rich Cretaceous sequences. NATO Scientific Series C, 304, 75–119.
  • 3. Bice, K.L., Birgel, D., Meyers, P.A., Dahl, K.A., Hinrichs, K.-U. and Norris, R.D. 2006. A multiple proxy and model study of Cretaceous upper ocean temperatures and atmospheric CO2 concentrations. Paleoceanography, 21; PA2002, doi:10.1029/2005PA001203.
  • 4. Blakey, R.C. 2015. Global Map of the Late Cretaceous. http://cpgeosystems.com/75moll.jpg.
  • 5. Coplen, T.B. and Schlanger, S.O. 1973. Oxygen and carbon isotope studies of carbonate sediments from site 167, Magellan Rise, LEG 17. In Winterer E.L., Ewing, J.I. et al., (Eds), Initial Reports of the Deep Sea Drilling Project, 17, 505–509. Washington DS. (U.S. Government Printing Office).
  • 6. Dubicka, Z. Peryt, D. and Szuszkiewicz, M. 2014. Foraminiferal evidence for paleogeographic and paleoenvironmental changes across the Coniacian–Santonian boundary in western Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology, 401, 43–56.
  • 7. Gale A.S., Kennedy W.J., Voigt S. and Walaszczyk I. 2005. Stratigraphy of the Upper Cenomanian–Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cretaceous Research, 26, 460–487.
  • 8. Gale, A.S., Kennedy, W.J., Lees, J.A., Petrizzo, R.M. and Walaszczyk. I. 2007. An integrated study (inoceramid bivalves, ammonites, calcareous nannofossils, planktonic foraminifera, carbon stable isotopes) of the Ten Mile Creek section, Lancaster, Dallas County, north Texas, a candidate Global boundary Stratotype Section and Point for the base of the Santonian Stage. Acta Geologica Polonica, 57, 113–160.
  • 9. Gavrilishin, V.I., Pasternak, S.I. and Rozumeyko, S.V. 1991. Stratigraficheskiye podrazdeleniya melovykh otlozhemiy platformennoy chasti zapada Ukrainy. Akademia Nauk USSR, Institute Geologii i Geokhimii Goryuchikh Iskopayemykh, Lviv, 1–91.
  • 10. Gruszczyński, M., Coleman, M.L., Marcinowski, R., Walaszczyk. I and Isaacs, M.C. 2002. Palaeoenvironmental conditions of hardgrounds formation in the Late Turonian–Coniacian of Mangyshlak Mountains, western Kazakhstan. Acta Geologica Polonica, 52, 423–435.
  • 11. Hancock, J.M. 1991. Ammonite time scales for the Cretaceous System. Cretaceous Research, 12, 259–291.
  • 12. Hudson, J.D. 1977. Stable Isotopes and limestone lithification. Journal of the Geological Society of London, 133, 637–660.
  • 13. Huber, B.T., Hodell, D.A. and Hamilton, C.P. 1995. Middle-Late Cretaceous climate of the southern high latitudes; stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin, 107, 1164–1191.
  • 14. Ivannikov, A.V., Lipnik, L.F., Plotnikova, L.F., Blank, M.Y., Gavrilishin, V.I. and Pasternak, S.I. 1987. Novye mestnye stratigraficheskiye podrazdeleniya verkhnego mela platformennoy Ukrainy, pp. 41–87. Akademia Nauk USSR, Institut Geologiceskich Nauk; Kiev.
  • 15. Jacobs, L.L., Ferguson, K., Polcyn, M.J and Rennison, C. 2005. Cretaceous δ13C stratigraphy and the age of dolichosaurs and early mosasaurs. In: A.S. Schulp, and J.W.M. Jagt (Eds): Proceedings of the First Mosasaur Meeting. Netherlands Journal of Geosciences — Geologie en Mijnbouw, 84, 257–268.
  • 16. Jarvis, I., Gale., Jenkyns, H.C. and Pearce, M.A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve A for the Cenomanian – Campanian (92.6 – 70.6 Ma). Geological Magazine, 143, 561–608.
  • 17. Jenkyns, H.C., Gale, A.S. and Corfield, R.M. 1994. Carbonand oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic siginificance. Geological Magazine, 131, 1–34.
  • 18. Kamieński, M. 1925. Przyczynek do zanjomości kredy żurawieńskiej. Kosmos, 50, 1408–1425.
  • 19. Kaplan, U. and Kennedy, W.J. 2000. Santonian ammonite stratigraphy of the Münster Basin, NW Germany. Acta Geologica Polonica, 50, 99–119.
  • 20. Kennedy, W.J. and Kaplan, U. 2000. Ammonitenfaunen des hohen Oberconiac und Santon in Westfalen. Geologie und Paläontologie in Westfalen, 57, 1–131.
  • 21. Kennedy, W.J. and Cobban, W.A. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology, 17, 1–94.
  • 22. Kennedy, W.J., Bilotte, M. and Melchior, P. 1995. Ammonite faunas, biostratigraphy and sequence stratigraphy of the Coniacian-Santonian of the Corbieres (NW Pyrenees). Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, 19, 377–499.
  • 23. Kokoszyńska, B. 1931. O faunie, wykształceniu facjalnemu i stratygrafji cenomanu na Podolu. Sprawozdania Polskiego Instytutu Geologicznego, 4, 627–695.
  • 24. Krzywiec P., Gutowski J., Walaszczyk I., Wróbel G. and Wybraniec S. 2009. Tectonostratigraphic model of the Late Cretaceous inversion along the Nowe Miasto-Zawichost Fault Zone, SE Mid-Polish Trough. Geological Quarterly, 53, 27–48.
  • 25. Lamolda, M.A. and Paul, C.R.C. 2007. Carbon and oxygen stable isotopes across the Coniacian/Santonian boundary at Olazagutia, northern Spain. Cretaceous Research, 28, 37–45.
  • 26. Lamolda, M.A., Paul, C.R.C., Peryt, D. and Pons, J.M. 2014. The Global Boundary Stratotype and Section Point (GSSP) for the Base of the Santonian Stage, “Cantera de Margas“, Olazagutia, Northern Spain. Episodes, 37, 2–13.
  • 27. Leckie, R.M., Sterzinar, E.M. and Tibert, N.E. 2005. OAE2 and OAE3 in the Western Interior Seaway of North America: Influence of Tectonics, Sea Level, and Climate words missg Late Turonian-Early Campanian Niobrara Cycle. In: International Symposium on Recent Advances in Research on Terestrial and Marine Sequences from the mid- Cretaceous Oceanic Anoxic Events (OAEs), 7–9. Hokaido.
  • 28. Leszczyński K. 2012. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geological Quarterly, 56, 363–386.
  • 29. Li, X., Jenkyns, H.C., Wang, C., Hu, X., Chen, X., Wei, Y., Huang, Y. and Cui, J. 2006. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological Society, London, 163, 375–382.
  • 30. Lommerzheim, A.J. 1995. Stratigraphie und Ammonitenfaunen des Santons und Campans im Münsterlander Becken (NW-Deutschland). Geologie und Palaontologie in Westfalen, 40, 1–97.
  • 31. Marcinowski, R. and Wiedmann, J. 1988. Paleogeographic implications of the Albian ammonite faunas of Poland. In: J. Wiedmann and J. Kullmann, (Eds), Cephalopods – Present and Past, pp. 491–504. Schweizerbartsche Verlagsbuchhandlung; Stuttgart.
  • 32. Marcinowski, R. and Wiedmann, J. 1990. The Albian Ammonites of Poland. Paleontologia Polonica, 50, 3–94.
  • 33. Marshall, J.D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine, 129, 143–160.
  • 34. Melinte, M.C. and Lamolda, M.A. 2002. Calcareous nannofossils around the Coniacian/Santonian boundary interval in the Olazagutia section (N. Spain). In: M. Wagreich, (Ed.), Aspects of Cretaceous Stratigraphy and Palaeobiogeography. Österreichische Akademie der Wissenschaften Schriftenreihe Erwissenschaftlichen Kommissionen, 15, 351–364.
  • 35. Melinte, M.C. and Lamolda, M.A. 2007. Calcareous nannofossil biostratigraphy of the Coniacian/Santonian boundary interval in Romania and comparison with other European regions. Cretaceous Research, 28, 119–127.
  • 36. Melinte-Dobrinescu, M.C. and Bojar, A.V. 2010. Late Cretaceous carbon- and oxygen isotope stratigraphy, nannofossil events and paleoclimate fluctuations in the Haţeg area (SW Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 295–305.
  • 37. Mitchell, S.F., Ball, J.D., Crowley, S.F., Marshall, J.D., Paul, C.R.C., Veltkamp, C.J. and Samir, A. 1997. Isotopic data from Cretaceous chalks and foraminifera: environmental or diagenetic signals? Geology, 25, 691-694.
  • 38. Nowak, J. 1907. Przyczynek do znajomości kredy Lwowsko-Rawskiego Roztocza. Kosmos, 32, 160–169.
  • 39. Nowak, J. 1908. Spostrzeżenia w sprawie wieku kredy zachodniego Podola. Kosmos, 33, 279–285.
  • 40. Nowak, J. 1911. Spostrzeżenia nad rozmieszczeniem kredy mukronatowej i kwadratowej na zachodniem Podolu. Kosmos, 36, 480–486.
  • 41. Nowak, J. 1913. O kredzie zachodniej części Podola i Wołynia. Sprawozdanie Towarzystwa Naukowego Warszawskiego, 8, 765–803.
  • 42. Nowak, J. 1914. Jednostki tektoniczne polskich Karpat Wschodnich. Towarzystwo dla Popierania Nauki Polskiej, 1–160. Lwów, 1914.
  • 43. Pasternak, S.I. 1959. Biostratygrafiya kreydovykh vidkladiv Volyno-Podilskoi plyty. Vydavnytstvo Akademii Nauk Ukrainskoi RSR, Kiev, 3–98.
  • 44. Pasternak, S.I., Gavrylyshyn, V.I., Ginda, V.A., Kotsyubinsky, S.P. and Senkovskyi, Y.M. 1968. Stratygrafia i fauna kredowych vidkladiv zachodu Ukrainy. Naukova Dumka, Kiev, 1–272.
  • 45. Pasternak, S.I., Senkovskyi, Y.M. and Gavrylyshyn, V.I. 1987. Volyno-Podillya u kreydovomu periodi. Naukova Dumka, Kiev, 3–258.
  • 46. Pożaryski, W. 1962. Atlas Geologiczny Polski – zagadnienia stratygraficzno facjalne. Zeszyt 10 – Kreda. Instytut Geologiczny; Warszawa.
  • 47. Pożaryski, W. 1964. Zarys tektoniki paleozoiku i mezozoiku Niżu Polskiego (Outline of Paleozoic and Mesozoic tectonics of Polish Lowlands). Geological Quarterly, 8, 1–32.
  • 48. Pożaryski, W. 1974. Tectonics. Part 1. Polish Lowlands. In: Pożaryski, W. (Ed.), Geology of Poland IV, pp. 2–34. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 49. Pożaryski, W. 1997. Tektonika powaryscyjska obszaru świętokrzysko–lubelskiego na tle struktury podłoża. Przegląd Geologiczny, 45, 1265–1270.
  • 50. Pożaryski, W., Brochwicz-Lewiński, W., Brodowicz, Z., Jaskowiak-Szoenejch, M., Milewicz, J., Sawicki, L. and Uberna, T. 1979. Geological map of Poland and adjoining countries, without Cenozoic formations (without Quaternary in the Carpathians). Wydawnictwa Geologiczne; Warszawa.
  • 51. Remin, Z. 2004. Biostratigraphy of the Santonian in the SW margin of the Holy Cross Mountains near Lipnik, a potential reference section for extra-Carpathian Poland. Acta Geologica Polonica, 54, 587–596.
  • 52. Remin, Z. 2010. Upper Coniacian, Santonian, and lowermost Campanian ammonites of the Lipnik-Kije section, central Poland, taxonomy, stratigraphy, and palaeogeographic significance, Cretaceous Research, 31, 154–180.
  • 53. Remin, Z., Cyglicki, M., Cybula, M. and Roszkowska-Remin, J. 2015. Deep versus shallow? Deltaically influenced sedimentation and new transport directions – case study from the Upper Campanian of the Roztocze Hills, SE Poland. Abstract Book of the 31st IAS Meeting of Sedimentology, 22nd–25th June 2015, p. 438. Kraków.
  • 54. Rogala, W. 1908. Sprawozdanie z badań geologicznych wzdłóż kolei Lwów – Podhajce. Kosmos, 33, 50–62.
  • 55. Rogala, W. 1909. O stratygrafii utworów kredowych Podola. Kosmos, 34, 1160–1164.
  • 56. Rogala, W. 1910. O utworach kredowych wzdłóż północnego brzegu Podola. Kosmos, 35, 1013–1023.
  • 57. Rogala, W. 1911. Przyczynek do znajomości mukronatowej kredy okolic Lwowa. Kosmos, 36, 487–499.
  • 58. Samsonowicz, J. 1925. Szkic geologiczny okolic Rachowa nad Wisłą oraz transgresje albu i cenomanu w bróździe północno-europejskiej. Sprawozdania Polskiego Instytutu Geologicznego, 3, 45–98.
  • 59. Schlanger S.O, Arthur M., Jenkyns H.C and Scholle P.A. 1987. The Cenomanian-Turonian Oceanic Anoxic Event, I. Stratigraphy and distribution of organic-rich beds and the marine δ13C excursion. Geological Society London Special Publications Journal, 26, 371–399.
  • 60. Scholle, P.A. and Arthur, M.A. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists Bulletin, 64, 67–87.
  • 61. Stoll, H.M. and Schrag, D.P. 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: glacial episodes in a greenhouse planet? Geological Society of America Bulletin, 112, 308–319.
  • 62. Svabenicka, L. 1995. Common occurrences of the ecologically restricted nannofossils in the Campanian sediments of the Zdanice Unit and Waschburg Zone, West Carpathians. Geological Society of Greece, Special Publication, 4, 282–287.
  • 63. Świdrowska, J., Hakenberg, M., Poluthović, B., Seghedi, A. and Višnâkov, I. 2008. Evolution of the Mesozoic basins on the south western edge of the East European Craton (Poland, Ukraine, Moldova, Romania). Studia Geologica Polonica, 130, 3–130.
  • 64. Thierstein, H.R. 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Marine Micropaleontology, 1, 325–362.
  • 65. Vashchenko, V.O., Turchynova, S.M., Turchynov, I.I. and Polikha, G.G. 2007. Derzhavna geologichna karta Ukrainy, masshtab 1:200 000, Karpatska seria. Arkush M-35-XXV (Ivano-Frankivsk). Poyasniuvalna zapiska, Kyiv.
  • 66. Voigt, S. and Hilbrecht, H. 1997. Late Cretaceous carbon isotope stratigraphy in Europe: correlation and relations with sea level and sediment stability. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 39–59.
  • 67. Voigt, S. and Wiese, F. 2000. Evidence for late Cretaceous (Late Turonian) climate cooling from oxygen-isotope variations and palaeobiogeographic changes in Western and Central Europe. Journal of Geological Society, 157, 737–743.
  • 68. Voigt, S. 2000. Cenomanian–Turonian composite δ13C curve for Western and Central Europe: the role of organic and inorganic carbon fluxes. Palaeogeography, Palaeoclimatology, Palaeoecology, 160, 91–104.
  • 69. Walaszczyk, I. 1992. Turonian through Santonian deposits of the Central Polish Uplands; their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica, 42, 1–122.
  • 70. Walaszczyk, I. and Remin, Z. 2015. Kreda obrzeżenia Gór Świętokrzyskich. In: Stanisław Skompski i Włodzimierz Mizerski (Eds), Ekstensja i Inwersja Powaryscyjskich Basenów Sedymentacyjnych; LXXXVI Zjazd Naukowy Polskiego Towarzystwa Geologicznego, pp. 41–50.
  • 71. Zapata, E., Padron, V., Madrid, I., Ketznus, V., Truskowski, I. and Lorente, M.A. 2003. Biostratigraphic, sedimentologic, and chemostratigraphic study of the La Luna Formation (Late Turonian–Campanian) in the San Miguel and Las Hernández Sections, Western Venezuela. Palaios, 18, 367–377.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f4a1b7fb-770a-4dce-b2d7-ebc1f8137911
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.