PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Iron Compounds from Mechanical Filters of Household Reverse Osmosis Systems Water Purification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Today, the most convenient and widespread option for cleaning and purifying drinking water is to install reverse osmosis systems directly at the water intake points. When operating reverse osmosis systems, most owners are not concerned about the negative consequences of using such systems. After 3–6 months of using mechanical filters in the first stage of water treatment, such filters are thrown out together with other household waste. They pose a significant threat to the environment. Currently, companies in Ukraine would not collect and dispose of such filters. This direction is undeveloped. There are no corresponding data in the scientific literature. According to authors’ calculations, about 20,000 household reverse osmosis systems are operated per 1 million people today, so it is easy to calculate that 44,000 cartridges with a total polypropylene volume of 26 m3 enter the environment during the year. It is difficult to imagine the real environmental damage from the cartridges of even one city. Therefore, the regeneration of mechanical filters of reverse osmosis systems is quite relevant and essential today. This work aimed to develop an environmentally safe technology for regenerating mechanical filters with the possibility of repeated use. Filter lifespan can be prolonged by special cleaning with sulfuric acid with a fixed pH level. This article highlights the research results on the regeneration the mechanical filters, describes the characteristics of the cleaning process using sulfuric acid and shows the options for environmentally safe waste processing from such regeneration.
Twórcy
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Bibliografia
  • 1. Remeshevska I., Trokhymenko G., Gurets N., Stepova O., Trus I., Akhmedova V. 2021. Study of the Ways and Methods of Searching Water Leaks in Water Supply Networks of the Settlements of Ukraine. Ecol. Eng. Environ. Technol., 22(4), 14–21. doi.org/10.12912/27197050/137874
  • 2. Trus I., Gomelya M. 2021. Effectiveness nanofiltration during water purification from heavy metal ions. Journal of Chemical Technology and Metallurgy, 56(3), 615–620.
  • 3. Trus I., Gomelya M., Skiba M., Pylypenko T., Krysenko T. 2022. Development of ResourceSaving Technologies in the Use of Sedimentation Inhibitors for Reverse Osmosis Installations. J. Ecol. Eng., 23(1), 206–215. https://doi.org/10.12911/22998993/144075
  • 4. Trus I., Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko L. 2019. Innovative Approach in Creation of Integrated Technology of Desalination of Mineralized Water. Journal of Ecological Engineering, 20(8), 107–113. https://doi.org/10.12911/22998993/110767
  • 5. Trus І., Gomelya N., Halysh V., Radovenchyk I., Stepova O., Levytska O. 2020. Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3/6(105), 21–27. https://doi.org/10.15587/1729-4061.2020.206443
  • 6. Trus I., Gomelya M. 2023. Applications of antiscalants in circulating water supply systems. Journal of Chemical Technology and Metallurgy, 58(2), 360–366.
  • 7. Trus I., Gomelya M., Levytska O., Pylypenko T. 2022. Development of scaling reagent for waters of different mineralization. Ecological Engineering and Environmental Technology, 23(4), 81–87. https://doi.org/10.12912/27197050/150201
  • 8. Gomelya M.D., Trus I.M., Radovenchyk I.V. 2014. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105.
  • 9. Nirmala K., Rangasamy G., Ramya M., Uma Shankar V., Rajesh G. 2023. A critical review on recent research progress on microplastic pollutants in drinking water, Environmental Research, 222, 115–122. https://doi.org/10.1016/j.envres.2023.115312
  • 10. Wang, H., Wang, Y., Han, X., Zhang, J., Tang, F. 2021. Monitoring DOM in drinking water supply systems using DOC, CODMn, UV and fluorescence measurements. Environmental Science: Water Research & Technology, 7(12), 107–120. https://doi.org/10.1039/D1EW00409C
  • 11. Radovenchik, Y., Gomelya, M. 2016. Physicochemical methods of water purification. Condor Publishing House, 264.
  • 12. Malaeb, L., Ayoub, G. 2011. Reverse osmosis technology for water treatment: State of the art review. Desalination, 1(267), 1–8. https://doi.org/10.1016/j.desal.2010.09.001
  • 13. Giraldo-Mejıa, H., Toledo-Alarcón, J., Rodriguez, B., García, A. 2022. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse. Chemical Engineering Research and Design, 184, 473–487. https://doi.org/10.1016/j.cherd.2022.06.031
  • 14. Amimul A., Monzur I. 2019. Nanofiltration Membrane Technology Providing Quality Drinking Water. Editor. Nanotechnology in Water and Wastewater Treatment, 14, 291–295. https://doi.org/10.1016/B978-0-12-813902-8.00014-9
  • 15. Melliti, E., Van der Bruggen, B., Elfil, H. 2023. Chemical inhibition of combined gypsum and iron oxides membrane fouling during reverse osmosis desalination process: Prevention and regeneration of membranes. Desalination, 551. https://doi.org/10.1016/j.desal.2023.116414
  • 16. Tanioka, K.S.A., Irie, M., Zaitsu, S., Sakai, H., Hayashi, H. 2012. Power generation by pressure retarded osmosis using concentrated brine from seawater desalination system and
  • 17. treated sewage: review of experience with pilot plant in Japan. The 3rd Osmosis
  • 18. Membrane SummitStatkraft, 4, 1–33. http://refhub.elsevier.com/S2214-9937(15)30010-5/rf1945
  • 19. Zhou, J., Chang, V.W.-C., Fane, A.G. 2011. Environmental life cycle assessment of reverse osmosis desalination. The influence of different life cycle impact assessment methods on the characterization results, Desalination, 283, 227–236. https://doi.org/10.1016/j.desal.2011.04.066
  • 20. Siyuan, L., Zhongyang, W., Han, M., Zhang, J. 2021. Embodied water consumption between typical desalination projects: Reverse osmosis versus lowtemperature multi-effect distillation. Journal of Cleaner Production, 295. https://doi.org/10.1016/j.jclepro.2021.126340
  • 21. Giagnorio, M., Morciano, M., Zhang, W., Hélix- Nielsen, C., Fasano, M., Tiraferri, A. 2022. Coupling of forward osmosis with desalination technologies: System-scale analysis at the water-energy nexus. Desalination, 543. https://doi.org/10.1016/j.desal.2022.116083
  • 22. Fathizadeh, M., Aroujalian, A., Raisi, A. 2011. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. Journal of Membrane Science, 375(1–2), 88–95. https://doi.org/10.1016/j.memsci.2011.03.017
  • 23. Dong, X., Wang, X., Xu, H., Huang, Y., Gao, C., Gao, X. 2022. Mesoporous hollow nanospheres with amino groups for reverse osmosis membranes with enhanced permeability. Journal of Membrane Science, 657. https://doi.org/10.1016/j.memsci.2022.120637
  • 24. Jiang, J-Q., Graham, N.J.D. 1998. Observations of the comparative hydrolysis/precipitation behaviour of polyferric sulphate and ferric sulphate. Water Research, 32(3). https://doi.org/10.1016/S0043-1354(97)83364-7
  • 25. Song, M., Ju Im, S., Jeong, D., Jang, A. 2020. Reduction of biofouling potential in cartridge filter by using chlorine dioxide for enhancing anti-biofouling of seawater reverse osmosis membrane. Environmental Research, 180. https://doi.org/10.1016/j.envres.2019.108866
  • 26. Komplet wkładów do filtra RO5 Mini. URL: https://sklep.osmoza.pl/komplet-wkladow-gw-set-ro5-mi-ni-p-1902.html
  • 27. KW-RO-HS: Komplet wkładów wstępnych. URL: https://www.woda.com.pl/p1841,kw-ro-hs-komplet-wkladow-wstepnych.html
  • 28. KW-RO-USTM: Komplet wkładów wstępnych, URL: https://www.woda.com.pl/p160,kw-ro-ustm-komplet-wkladow-wstepnych.html
  • 29. Komplet wkładów do filtrów Klarwod do systemu odwróconej osmozy - Wkłady – Castorama. URL: https://www.castorama.pl/komplet-wkladow-do-filtrow-klarwod-do-systemu-odwroconej-osmozy-id-1058405
  • 30. FCPS1 wkład piankowy polipropylenowy mechaniczny. URL: https://filtrowana.pl/pl/p/fcps1--wklad-piankowy-polipropylenowy-mechanicz-ny/1356
  • 31. Naturewater 20 Inch – 508 mm 5μ Sediment Filter Insert PP-20A-1. https://www.naturewater.eu/Naturewater-20Zoll-508mm-5-Sedimentfilter-Einsatz-PP-20A-1/51184
  • 32. Naturewater 20 Zoll – 508 mm 5μ Sedimentfilter Einsatz PP-20A-1. URL: https://www.naturewater.eu/Naturewater-20Zoll-508mm-5-Sedimentfilter--Einsatz-PP-20A-1/51184
  • 33. Schaumkartuschen Sedimentersatz Haus Pumpe Umkehrosmoseset Wasserfilter Germany | eBay. URL: https://www.ebay.de/itm/266123327536?hash=item3df62fb830:g:InkAAOSwWxNY05xO-&var=565962149345
  • 34. Consumibles osmosis inversa doméstica IDRA-PURE 93⁄4" de Idrania. URL: https://www.turiego.es/consumibles-osmosis-inversa-domestica-idrapure-idrania.html#.Y_XjzLdc6Nw
  • 35. Juego de 3 filtros de espiga en 11⁄4" GEDAR: Equipos y Productos para Agua. URL: https://www.gedar.es/tienda/400-juego-de-3-filtros-de-espiga-en-i-14.html
  • 36. Cartridge polypropylene PP 10”. URL: https://www.aqua-ua.com/ua/product/kartridzh-polipro-pilenovyy-pp-10-1-mkm/
  • 37. Improved set of Ecosoft 1-2-3 cartridges for reverse osmosis filters (CHV3ECO). URL: https://ecosoft.ua/ua/uluchshennyy-komplekt-kartridzhey-ecosoft-1-2-3-dlya-filtra-obratnogo-osmosa/
  • 38. Set of 1-2-3 Ecosoft cartridges for reverse osmosis filters. URL: https://bt.rozetka.com.ua/dlya-sistem-obratnogo-osmosa/c196454/
  • 39.Improved set of cartridges for reverse osmosis Aqualite Premium. URL: https://vodavdom.ua/ua/Product/2264
  • 40. KP-RO5-HS: Komplet wkładów do filtrów RO5. URL: https://www.woda.com.pl/p1969,kp-ro5-hs--komplet-wkladow-do-filtrow-ro5.html
  • 41. Cartridge polypropylene Bio+ systems PP-20L Big Blue 20”. URL: https://mixer.km.ua/p1496888166-kartridzh-polipropilenovyj-bio.html
  • 42. Cartridge polypropylene ПП 20” 5. URL: https://www.aqua-ua.com/ua/product/kartridzh-polipro-pilenovyy-pp-20-5-mkm/
  • 43. How often to replace the cartridges in the reverse osmosis filter? URL: https://vodavdom.ua/ua/blog/kak-chasto-menyat-kartridzhi-v-filtre-obratnogoosmosa/
  • 44. Ordering filter installation or maintenance. URL: https://ecosoft.ua/ua/services/
  • 45. Reverse osmosis service. URL: https://vencon.ua/ua/catalog/servis-obratnogo-osmosa
  • 46. Elsaid, M., Kamil, M., Olabi, A. 2020. Environmental impact of desalination technologies: A review. Science of The Total Environment, 748. https://doi.org/10.1016/j.scitotenv.2020.141528
  • 47. Chen, Z., Zhu, S., Ren, H. 2021. Occurrence of highrisk mcr-1 gene and blaNDM-1 positive superbug in the reverse osmosis filter cartridges of the household water purifiers. Journal of Hazardous Materials Letters, 2, 123–131. https://doi.org/10.1016/j.hazl.2020.100011
  • 48. Grossi, L.B., da Silva, B.R.S., Neves, E.F.O., Lange, L.C., Amaral, M.C.S. 2021. Reverse osmosis elements waste assessment: Screening and forecasting of emerging waste in Brazil. Desalination, 517(1). https://doi.org/10.1016/j.desal.2021.115245
  • 49. Sophonsiri, C., Morgenroth, E. 2004. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere, 55(5), 691–703. https://doi.org/10.1016/j.chemosphere.2003.11.032
  • 50.Goronovsky, I., Nazarenko, Yu., Nekryach, E. 1962. Short reference book of chemistry. Institute of the Academy of Sciences of the Ukrainian SSR, 660.
Uwagi
1. Błędna numeracja w bibliografii (poz. 16-18).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f190d4e6-805e-4511-a3ca-793592375606
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.