PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biological evaluation of selective laser melted magnesium alloy powder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The current study examined magnesium alloy AZ31B specimens manufactured with Additive Manufacturing method (selective laser melting – SLM) to investigate the applicability of this technology for the production of medical devices. Methods: Osteoblast cells and bacterial biofilm growth ability on specimen was examined and the effect of surface state on corrosion resistance was evaluated by electrochemical and immersion methods. Results: High survival of hFOB cells, as well as a strong tendency for Pseudomonas aeruginosa and Staphylococcus aureus biofilm proliferation on the surface of the tested specimens were shown. SLM-processed AZ31B alloy has a higher corrosion resistance in 0.9% NaCl solution and in a multi-electrolyte saline solution than the material in a conventional form of a rolled sheet. Conclusions: It has been demonstrated that the strong development of the surface of as-built processed specimens results in a significantly increased corrosion rate, which hinders the production of complex structures in tissue engineering products that support cell ingrowth.
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
autor
  • Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies, Wrocław University of Science and Technology, Wrocław, Poland
Bibliografia
  • [1] AVVARI M.S.N., ABLE M., Microstructure evolution in AZ61 alloy processed by equal channel angular pressing, Adv. Mech. Eng., 2016, 8, 168781401665182, DOI: 10.1177/ 1687814016651820.
  • [2] BJARNSHOLT T., Biofilm Infections, Springer Science, 2011.
  • [3] BODNÁROVÁ S., GROMOŠOVÁ S., HUDÁK R., ROSOCHA J., ŽIVČÁK J., PLŠÍKOVÁ J., VOJTKO M., TÓTH T., HARVANOVÁ D., IŽARIKOVÁ G., DANIŠOVIČ Ľ., 3D-printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/ abb-01407-2019-02.
  • [4] CAO P., LI W.W., MORRIS A.R., HORROCKS P.D., YUAN C.Q., YANG Y., Investigation of the antibiofilm capacity of peptidemodified stainless steel, R. Soc. Open Sci., 2018, 5, DOI: 10.1098/rsos.172165.
  • [5] CASTELLANI C., LINDTNER R.A., HAUSBRANDT P., TSCHEGG E., STANZL-TSCHEGG S.E., ZANONI G., BECK S., WEINBERG A.M., Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 2011, 7, 432–440, DOI: 10.1016/ j.actbio.2010.08.020.
  • [6] CHENG P., ZHAO C., HAN P., NI J., ZHANG S., ZHANG X., CHAI Y., Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits, J. Mater. Sci. Technol., 2016, 32, 883–888, DOI: 10.1016/ j.jmst.2016.03.012.
  • [7] CHOU D.T., HONG D., SAHA P., FERRERO J., LEE B., TAN Z., DONG Z., KUMTA P.N., In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials, Acta Biomater., 2013, 9, 8518–8533, DOI: 10.1016/j.actbio.2013.06.025.
  • [8] CULMONE C., SMIT G., BREEDVELD P., Additive manufacturing of medical instruments: A state-of-the-art review, Addit Manuf., 2019, 27, 461–473, DOI: 10.1016/ j.addma.2019.03.015.
  • [9] DZIADOŃ A., MOLA R., Magnesium – trends of development of mechanical properties, Inżynieria Mater w obróbce Plast XXIV, 2013, 253–277.
  • [10] GALLI S., STOCCHERO M., ANDERSSON M., KARLSSON J., HE W., LILIN T., WENNERBERG A., JIMBO R., The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation, Osteoporos. Int., 2017, 28, 2195–2205, DOI: 10.1007/s00198-017-4004-5.
  • [11] GIESEKE M., NÖLKE C., KAIERLE S., MAIER H.J., HAFERKAMP H., Selective Laser Melting of Magnesium Alloys for Manufacturing Individual Implants, Fraunhofer Direct Digital Manufacturing Conference, 2014, 1–6.
  • [12] GRUBER K., MACKIEWICZ A., STOPYRA W., DZIEDZIC R., KURZYNOWSKI T., Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM), Acta Bioeng. Biomech., 2019, 21, 157–168, DOI: 10.5277/ABB-01472-2019-04.
  • [13] GU X., ZHENG Y., CHENG Y., ZHONG S., XI T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30, 484–498, DOI: 10.1016/ j.biomaterials.2008.10.021.
  • [14] GU X., ZHOU W.R., ZHENG Y.F., CHENG Y., WEI S.C., ZHONG S.P., XI T.F., CHEN L.J., Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid, Acta Biomater., 2010, 6, 4605–4613, DOI: 10.1016/j.actbio.2010.07.026.
  • [15] GUGALA N., LEMIRE J.A., TURNER R.J., The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains, J. Antibiot. (Tokyo), 2017, 70, 775–780, DOI: 10.1038/ja.2017.10.
  • [16] HADZIMA B., MHAEDE M., PASTOREK F., Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9% NaCl solution, J. Mater Sci. Mater Med., 2014, 25, 1227–1237, DOI: 10.1007/s10856-014-5161-0.
  • [17] JAUER L., JÜLICH B., VOSHAGE M., MEINERS W., Selective Laser Melting of magnesium alloys, Eur. Cells Mater, 2015, 30.
  • [18] JUNKA A.F., SZYMCZYK P., SECEWICZ A., PAWLAK A., SMUTNICKA D., ZIÓŁKOWSKI G., BARTOSZEWICZ M., CHLEBUS E., The chemical digestion of Ti6Al7Nb scaffolds produced by selective laser melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm, Acta Bioeng. Biomech., 2016, 18, 105–110, DOI: 10.5277/ABB00333-2015-01.
  • [19] KOKUBO T., TAKADAMA H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 29072915, DOI: 10.1016/j.biomaterials.2006.01.017.
  • [20] LYCZKOWSKA E., SZYMCZYK P., DYBALA B., CHLEBUS E., Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing, Arch. Civ. Mech. Eng., 2014, 14, 586–594, DOI: 10.1016/j.acme.2014.03.001.
  • [21] MATENA J., PETERSEN S., GIESEKE M., TESKE M., BEYERBACH M., KAMPMANN A., ESCOBAR H., GELLRICH N.-C., HAFERKAMP H., NOLTE I., Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL, Int. J. Mol. Sci., 2015, 16, 13287–13301, DOI: 10.3390/ijms160613287.
  • [22] NG C.C., SAVALANI M.M., MAN H.C., GIBSON I., Layer manufacturing of magnesium and its alloy structures for future applications, Virtual Phys. Prototyp, 2010, 5, 13–19, DOI: 10.1080/17452751003718629.
  • [23] ORAPIRIYAKUL W., YOUNG P.S., DAMIATI L., TSIMBOURI P.M., Antibacterial surface modification of titanium implants in orthopaedics, J. Tissue Eng., 2018, 9, DOI: 10.1177/ 2041731418789838.
  • [24] PAWLAK A., CHLEBUS E., SZYMCZYK P., ZIÓŁKOWSKI G., JUNKA A.F., Selective Laser Melting of Magnesium AZ31 Alloy for Future Medical Applications, Fraunhofer Direct Digital Manufacturing Conference 2016, Fraunhofer, Berlin, 2016, 379–383.
  • [25] PAWLAK A., SZYMCZYK P., KURZYNOWSKI T., CHLEBUS E., Selective laser melting of magnesium AZ31B alloy powder, Rapid Prototyp J., 2020, 26, 249–258, DOI: 10.1108/RPJ-052019-0137.
  • [26] PAWLAK A., SZYMCZYK P., ZIÓŁKOWSKI G., CHLEBUS E., DYBAŁA B., Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM, Rapid Prototyp J., 2015, 21, 393–401, DOI: 10.1108/RPJ-10-2013-0101.
  • [27] PU Z., OUTEIRO J.C., BATISTA A.C., DILLON O.W., PULEO D.A., JAWAHIR I.S., Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components, Int. J. Mach. Tools Manuf., 2012, 56, 17–27, DOI: 10.1016/j.ijmachtools.2011.12.006.
  • [28] ROY R., TIWARI M., DONELLI G., TIWARI V., Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action, Virulence, 2018, 9, 522–554, DOI: 10.1080/21505594.2017.1313372.
  • [29] SANCHEZ A.H.M., LUTHRINGER B.J.C., FEYERABEND F., WILLUMEIT R., Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 2015, 13, 16–31, DOI: 10.1016/j.actbio.2014.11.048.
  • [30] SHRESTHA A., ZHILONG S., GEE N.K., KISHEN A., Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity, J. Endod., 2010, 36, 1030–1035, DOI: 10.1016/j.joen.2010.02.008.
  • [31] STAIGER M.P., PIETAK A.M., HUADMAI J., DIAS G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 2006, 27, 1728–1734, DOI: 10.1016/ j.biomaterials.2005.10.003.
  • [32] SZEWCZENKO J., KAJZER W., KAJZER A., BASIAGA M., KACZMAREK M., ANTONOWICZ M., NOWIŃSKA K., JAWORSKA J., JELONEK K., KASPERCZYK J., Biodegradable polymer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/abb-01461-2019-01.
  • [33] SZYMCZYK P., JUNKA A., ZIÓŁKOWSKI G., SMUTNICKA D., BARTOSZEWICZ M., CHLEBUS E., The ability of S.aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 2013, 15, 69–76, DOI: 10.5277/abb130109.
  • [34] TALTAVULL C., TORRES B., LOPEZ A.J., RODRIGO P., OTERO E., ATRENS A., RAMS J., Corrosion behaviour of laser surface melted magnesium alloy AZ91D, Mater Des., 2014, 57, 40–50, DOI: 10.1016/j.matdes.2013.12.069.
  • [35] TSIMBOURI P.M., FISHER L., HOLLOWAY N., SJOSTROM T., NOBBS A.H., MEEK R.M.D., SU B., DALBY M.J., Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates, Sci. Rep., 2016, 6, 1–12, DOI: 10.1038/srep36857.
  • [36] WITTE F., Reprint of: The history of biodegradable magnesium implants: A review, Acta Biomater., 2015, 23, S28–S40, DOI: 10.1016/j.actbio.2015.07.017.
  • [37] WITTE F., HORT N., VOGT C., COHEN S., KAINER K.U., WILLUMEIT R., FEYERABEND F., Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater Sci., 2008, 12, 63–72, DOI: 10.1016/j.cossms.2009.04.001.
  • [38] ZENG R., CHEN J., DIETZEL W., HORT N., KAINER K.U., Electrochemical behavior of magnesium alloys in simulated body fluids, Trans. Nonferrous Met. Soc. China, 2007, 17, 166–170.
  • [39] ZHANG S., ZHANG X., ZHAO C., LI J., SONG Y., XIE C., TAO H., ZHANG Y., HE Y., JIANG Y., BIAN Y., Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater., 2010, 6, 626–640, DOI: 10.1016/j.actbio.2009.06.028.
  • [40] ZULUAGA A.F., GALVIS W., SALDARRIAGA J.G., AGUDELO M., SALAZAR B.E., VESGA O., Etiologic Diagnosis of chronic Osteomyelitis A Prospective Study, Arch. Intern. Med., 2006, 166, 95–100.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f0589ba2-5dd9-4372-a119-70dec281758b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.