PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of reduced glutathione form as a biomarker of oxidative stress in spinach plants growing in soil contaminated with zinc

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is the assessment of the efficiency of anti-oxidative system in spinach plants growing in the substratum polluted with zinc. The assessment was conducted on the basis of changes of reduced glutathione (GSH) form concentration in the plant aboveground organs. Spinach plants, ‘Matador’ c.v., were cultivated in soils contaminated with zinc in two pot experiments conducted in 2010 and 2011. The experimental substratum was light, slightly soil with granulometric composition of sandy silt loam. Zinc in the acetate form, was supplied to the soil in four doses corresponded to this metal critical concentrations in soil with 0, I, II and III degrees of pollution with this element according to IUNG classification. Simultaneously, the control with natural Zn content in soil was maintained. Zn concentrations in spinach ranged from 412.8 to 1722 mg kg-1 d.m. and increased with growing degree of substratum pollution with this element. Over the course of the vegetation period the content of Zn in plants was generally greater. GSH content in spinach grown in both years of experiments fluctuated from 31.70 to 238 μg g-1 f.m. The biggest content of this compound in spinach was stated in the initial phase of plants growth. The plants tolerated only the first two Zn doses supplied to the substratum. Spinach growing in the objects where zinc additions to the soil equalled II and III degree of substratum pollution died shortly after germination. The plants from these objects in the initial growth phase contained significantly less GSH than spinach from the objects with two first degrees (0 and I) of substratum pollution with zinc or from the control. The content of reduced glutathione form in spinach is a good biomarker of oxidative stress caused by zinc presence in plants. Synthesis of a bigger amount of GSH conditions spinach plant resistance to over the norm zinc content in soil. The efficiency of antioxidative system in spinach is bigger in the initial phase of this plant growth.
Rocznik
Strony
61--66
Opis fizyczny
Bibliogr. 18 poz., tab., rys.
Twórcy
  • Department of Agricultural and Environmental Chemistry, University of Agriculture, 21 A. Mickiewicza Ave., 31–120 Kraków, Poland
  • Department of Agricultural and Environmental Chemistry, University of Agriculture, 21 A. Mickiewicza Ave., 31–120 Kraków, Poland
autor
  • Department of Agricultural and Environmental Chemistry, University of Agriculture, 21 A. Mickiewicza Ave., 31–120 Kraków, Poland
Bibliografia
  • 1. Agarwal S. 2007. Increased antioxidant activity in Cassia seedlings under UV-B radiation Biol. Plantarum, 51(1): 157–160.
  • 2. Bartosz G. 2003. Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. Nauk. PWN, Warszawa.
  • 3. Foyer C.H., Lopez-Delgado H., Dat J.F., Scott I.M. 1997. Hydrogen peroxide- and glutathione- associated mechanisms of acclimatory stress tolerance and signaling. Physiol. Plantarum, 100: 241–254.
  • 4. Guri A. 1983. Variation in glutathione and ascorbic acid content among selected cultivars of Pftaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant. Sci., 63: 733–737.
  • 5. Hall J.L. 2002. Cellular mechanism for heavy metal detoxification and tolerance. J. Exp. Bot., 53(366): 1-11.
  • 6. Igamberdiev A., Hill R. 2004. Nitrate, NO and hemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J. Exp. Bot., 55: 2473–2482.
  • 7. Kabata-Pendias A., Piotrowska M., Motowicka- Terelak T., Maliszewska-Kordybach B., Filipiak K., Krakowiak A., Pietruch Cz. 1995. Podstawy oceny chemicznego zanieczyszczenia gleb. Metale ciężkie, siarka i WWA. Biblioteka Monitoringu Środowiska, Państwowa Inspekcja Ochrony Środowiska, Warszawa, 34 p.
  • 8. Kopcewicz J., Lewak S. Fizjologia roślin. 2002. Wyd. Nauk. PWN, Warszawa.
  • 9. May M., Leaver V., Montagu M., Inze´ D. 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot., 49(321): 649–667.
  • 10. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Katalog. Wyd. IOŚ, Warszawa.
  • 11. Pastore A., Federici G., Bertini E., Piemonte F. 2003. Analysis of glutathione: implication in redox and detoxification. Clin. Chim. Acta., 333: 19–39.
  • 12. Rennenberg H., Brunold C. 1994. Significance of glutathione in metabolism in plants under stress. Prog. Bot., 55: 142–156.
  • 13. Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol., 101: 7–12.
  • 14. Sies H. 1999. Glutathione and its role in cellular function. Free Radic. Biol. Med., 27(9–10): 916–921.
  • 15. Starck Z., Chołuj D., Niemyska B. 1995. Fizjologiczne reakcje roślin na niekorzystne czynniki środowiska. 2 wyd. Wyd. SGGW, Warszawa.
  • 16. Tukendorf A. 1990. Rola kompleksów metaloproteinowych w tolerancji roślin wyższych na toksyczne stężenia metali ciężkich. Rozprawy Wydziału Biologii i Nauk o Ziemi UMCS, Rozprawy Habilitacyjne, Tom 39, 75 p.
  • 17. Winiarska K. 2000. Glutation: niezwykłe funkcje pospolitego peptydu. Post. Biochem., 46: 318–326.
  • 18. Yanqun Z., Yuan L., Schvartzc C., Langlade L., Fan L. 2004. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ. Int., 30: 567–576
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ef8ee6df-3ea3-44bf-95d1-7d196b943a60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.