Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Porównanie koncepcji skanowania laserowego z bezzałogowych statków latających
Języki publikacji
Abstrakty
This article provides description of new achievements in Unmanned Aerial Vehicles (UAVs) in the field of photogrammetry and remote sensing related to laser scanning technology. Platforms equipped with laser scanners are becoming a growing trend in UAV mapping. Two perspectives of development, which use laser sensors, as payload are described in this paper. The first solution is related to application of advanced LiDAR sensor, which collects data with simulated Beyond Visual Line Of Sight UAV (BVLOS UAV) platform from high altitude. The second development was less expensive UAV laser scanning system that acquires data from low-altitude Visual Line Of Sight (VLOS) platform. Additionally, state-of-art of LiDAR sensors, which can be mounted on UAVs, is presented, including categorization of ultralight laser scanners, legal restriction related to operating UAVs equipped with LiDAR system. In the experiment described in the article two datasets are introduced, one collected with Riegl VUX-1 UAV mounted on the first platform and the second with YellowScan Mapper that is a part of second UAV system. Captured datasets are evaluated concerning point density, spatial resolution, vegetation penetration and noise of laser beam assessment. The comparison indicates the differences between the platforms, what determines fields of their application. Therefore, conclusion related to the presented perspectives of development of UAV laser scanning can be drawn and possible future applications of both platforms are discussed.
Artykuł zawiera opis koncepcji rozwoju bezzałogowych statków latających (UAV) w dziedzinie fotogrametrii i teledetekcji związanych z technologią skanowania laserowego. Platformy wyposażone w skanery laserowe stają się coraz bardziej zauważalnym trendem w wykorzystaniu UAV w geodezji i kartografii. W niniejszym artykule opisano dwie perspektywy rozwoju tej branży, które wykorzystują sensory laserowe. Pierwsze rozwiązanie jest związane z zastosowaniem zaawansowanego skanera, który zbiera dane z symulowanej w doświadczeniu platformy poza zasięgiem wzroku (BVLOS UAV) z dużej wysokości. Drugą koncepcją rozwoju rynku jest pokazanie przykładu systemu skanowania laserowego UAV, który pozyskiwał dane z platformy w zasięgu wzroku (VLOS) na małej wysokości. Ponadto w artykule przedstawiono najnowocześniejsze skanery LiDAR, które mogą być montowane na UAV, w tym kategoryzację ultralekkich skanerów laserowych oraz prawne ograniczenia związane z eksploatacją UAV wyposażonych w system LiDAR. W opisanym eksperymencie w artykule analizowano dwa zestawy danych: jeden zebrano za pomocą UAV Riegl VUX-1 zamontowanego na platformie w postaci załogowego płatowca i drugiego za pomocą YellowScan Mappera, który jest częścią systemu UAV z platformą wielowirnikową. Przechwycone zestawy danych są oceniane pod względem gęstości punktów, rozdzielczości przestrzennej, możliwości penetracji roślinności i obserwowanego szumu wiązki laserowej. Porównanie wskazuje różnice między platformami, a tym samym koncepcjami i ich możliwymi zastosowaniami w perspektywie rozwoju skanowania laserowego UAV.
Rocznik
Tom
Strony
101--123
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology
autor
- Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology
autor
- Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology
autor
- Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology
autor
- Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Faculty of Geodesy and Cartography, Warsaw University of Technology
Bibliografia
- Aicardi I., Nyapwere N., Nex F., Gerke M., Lingua A. M., Koeva M. N. 2016. Co-registration of multitemporal UAV image datasets for monitoring applications: A new approach. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2016(B1), 757-763.
- Bakuła K., Ostrowski W., Szender M., Plutecki W., Salach A., Górski K. 2016. Possibilities for using lidar and photogrammetric data obtained with an unmanned aerial vehicle for levee monitoring. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41, 773-780.
- Bakuła K., Salach A., Zelaya Wziątek D., Ostrowski W., Górski K., Kurczyński Z. 2017. Evaluation of the accuracy of LiDAR data acquired using a UAS for levee monitoring: preliminary results. International Journal of Remote Sensing 38(8-10), 2921-2937.
- Colomina I., Molina P., 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 92, 79-97.
- Conte G., Kleiner A., Rudol P., Korwel K., Wzorek M., Doherty P. 2013. Performance Evaluation of a Light-Weight Multi-Echo Lidar for Unmanned Rotorcraft Applications. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 40, 4-6.
- Eisenbeiss H. 2004. A mini unmanned aerial vehicle (UAV): system overview and image acquisition. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 36, 1-7.
- Esposito S., Mura M., Fallavollita P., Balsi M., Chirici G., Oradini A., Marchetti M. 2014. Performance evaluation of lightweight LiDAR for UAV applications. Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 792-795.
- Glennie C., Lichti D. D. 2010. Static calibration and analysis of the velodyne HDL-64E S2 for high accuracy mobile scanning. Remote Sensing 2, 1610-1624.
- Jurkofsky D. A. 2015 Accuracy of SUAS Photogrammetry for Use in Accident Scene Diagramming. SAE International Journal of Transportation Safety 3, 136-152.
- Lin Y., Hyyppä J., Jaakkola A. 2011. Mini-UAV-borne LIDAR for fine-scale mapping. EEE Geoscience and Remote Sensing Letters 8(3), 426-430.
- Mandlburger G., Otepka J., Karel W., Wagner W., Pfeifer N. 2009. Orientation and processing of airborne laser scanning data (OPALS): concept and first results of a comprehensive ALS software. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 38, 55-60.
- Manyoky M., Theiler P., Steudler D., Eisenbeiss H. 2012. Unmanned Aerial Vehicle in Cadastral Applications. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 38, 57-62.
- Mitteta M.-A., Nouira H., Roynard X., Goulette F., Deschaud J.-E. 2016. Experimental Assessment of the Quanergy M8 LIDAR Sensor. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 41, 527-531.
- Nagai M., Chen T., Shibasaki R., Kumagai H., Ahmed A. 2009. UAV-borne 3-D mapping system by multisensor integration. IEEE Transactions on Geoscience and Remote Sensing 47(3), 701-708.
- Petrie G., 2013. Current developments in airborne laser scanners suitable for use on lightweight UAVs: Progress is being made! GeoInformatics 16, 16-22.
- Pilarska M., Ostrowski W., Bakuła K., Górski K., Kurczyński Z. 2016. The potential of light laser scanners developed for unmanned aerial vehicles - the review and accuracy. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 42, 87-95.
- Quaritsch M., Kruggl K., Wischounig-Strucl D., Bhattacharya S., Shah M., Rinner B. 2010. Networked UAVs as aerial sensor network for disaster management applications. Elektrotechnik und Informationstechnik 127, 56-63.
- Remondino F., Barazzetti L., Nex F., Scaioni M., Sarazzi D. 2012. Uav Photogrammetry for Mapping and 3D Modeling – Current Status and Future Perspectives. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 38, 25-31.
- Rizos C., Janssen V., Roberts C., Grinter T. 2012. Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? FIG Work. Week, 1-17.
- Starek M., Jung J. 2015. Lidar’s Next Geospatial Frontier–The state of lidar For UAS applications. GIM International 29, 25-27.
- Tommaselli A. M. G., Torres F. M. 2016. A light-weight laser scanner for UAV applications. International Archives of Photogrammetry. Remote Sensing and Spatial Information Sciences 41, 711-715.
- Kurczyński Z., Bakuła K.2016. SAFEDAM - advanced technologies in the prevention of flood hazard. Archiwum Fotogrametrii, Kartografii i Teledetekcji 28, 39-52.
- van Rees E., 2015. Aerial Image Drones on the Rise. GeoInformatics 18(4), 6-8.
- Wallace L., Lucieer A., Turner D., Watson C. 2011. Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory. In Proceedings of 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems SilviLaser. 1-9.
- Zhu L., Hyyppä J. 2014. Fully-automated power line extraction from airborne laser scanning point clouds in forest areas. Remote Sensing 6, 11267-11282.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee549f47-c2e1-4929-8a3e-6e0000695da4