PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of natural soda ash production process waste for SO2 removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of ChemCad©6.0 simulation have been presented on usability of natural soda ash production process waste in order to remove SO2 from flue gas. Properties and concentrations of the solutions used in this study belong to the waste stream of Eti Soda Inc., and the flue gas compositions were acquired from an existing thermal power plant. SO2 and H2O feed rates and flue gas entrance temperature to the absorption tower were optimized through the response surface methodology (RSM) in order to attain highest SO2 removal yields. It has been found that SO2 removal remained at 33.83% when the waste composition was lower than 2 wt. % while 100% SO2 removal was reached as the waste composition was increased to 8 wt. %. This result clearly demonstrates that treatment of natural soda ash production process waste can be done safely and economically while serving as an SO2 removal agent at the same time.
Rocznik
Strony
69--80
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
autor
  • Ankara University, Engineering Faculty, Chemical Engineering Department, 06100, Tandogan, Ankara, Turkey
autor
  • Ankara University, Engineering Faculty, Chemical Engineering Department, 06100, Tandogan, Ankara, Turkey
Bibliografia
  • [1] ÖZYOĞURAN A., ALTUN-ÇIFTÇIOĞLU G.A., KOCATEPE N., ERSOY-MERIÇBOYU A., Effect of magnesium ions on the sulphate ion capacity of limestone slurry, J. Environ. Sci. Health A, 2006, 41 (9), 1955.
  • [2] STOKER H.S., SEAGER S.L., Environmental Chemistry. Air and Water Pollution, Scott Foresman, Illinois 1972.
  • [3] MAHAJAN S.P., Pollution Control in Process Industries, McGraw Hill, New Delhi 1985.
  • [4] TOPAL H., Lime/lime-sugar waste pulp mixture usage for reduction of SO2 emissions caused by domestic heating, J. Fac. Eng. Arch. Gazi Univ., 2000, 15 (1), 15.
  • [5] Flue Gas Desulfurisation (FGD) Technologies, Cleaner Coal Technology Programme, Technology Status Report 012, Department of Trade and Industry, London 2000.
  • [6] WU C., KHANG S.-J., KEENER T.C., LEE S.-K., A model for sodium bicarbonate duct injection flue gas desulfurization, Adv. Environ. Res., 2004, 8, 655.
  • [7] LIU Y., BISSON T.M., YANG H., XU Z., Recent developments in novel sorbent for flue gas cleanup, Fuel Process. Technol., 2010, 91, 1175.
  • [8] OGENGA D.O., MBARAWA M.M., LEE K.T., MOHAMED A.R., DAHLAN I., Sulfur dioxide removal using South African limestone/siliceous materials, Fuel, 2010, 89, 2549.
  • [9] HONGLIANG G., CAITING L., GUANGMING Z., WEI Z., LIN S., SHANHONG L., YANAN Z., XIAOPENG F., QINGBO W., XIN S., Prediction and experimental validation studies of wet flue gas desulfurization with a novel type pcf device based on limestone-gypsum, Energ. Fuel, 2010, 24, 4944.
  • [10] HONGLIANG G., CAITING L., GUANGMING Z., WEI Z., LIN S., SHANHONG L., YANAN Z., XIAOPENG F., QINGBO W., XIN S., Flue gas desulfurization based on limestone-gypsum with a novel type PCF device, Sep. Purif. Technol., 2011, 76, 253.
  • [11] RECELJ T., GOLOB J., Equilibrium and mass transfer in the Ca2+–SO2–H2O system for the analysis of the flue gas desulfurization process, Process Saf. Environ., 2004, 82 (B5), 371.
  • [12] ERDÖL-AYDIN N., NASÜN-SAYGILI G., Modelling of trona based spray dry scrubbing of SO2, Chem. Eng. J., 2007,126, 45.
  • [13] VALDERRAMA J.O., TOSELLI L.A., FAÚNDEZ C.A., Advances on modeling and simulation of alcoholic distillation. Part 1. Thermodynamic modeling, Food Bioprod. Process., 2012, 90, 819.
  • [14] LAM K.F., SORENSEN E., GAVRIILIDIS A., Towards an understanding of the effects of operating conditions on separation by microfluidic distillation, Chem. Eng. Sci., 2011, 66, 2098.
  • [15] MAXIM V., CORMOS C.C., CORMOS A.M., AGACHI S., Mathematical modeling and simulation of gasification processes with carbon capture and storage (CCS) for energy vectors poly-generation, 20th EuropeanSymposium on Computer Aided Process Engineering – ESCAPE20, 2010, 28, 697.
  • [16] CALABRO A., DEIANA P., FIORINI P., GIRARDRI. G., STENDARDO S., Possible optimal configurations for the ZECOMIX high efficiency, Energy, 2008, 33, 952.
  • [17] ARAMI-NIYA A., DAUD W.M.A.W., MJALLI F.S., ABNISA F., SHAFEEYAN M.S., Production of mi-croporous palm shell based activated carbon for methane adsorption: modeling and optimization using response surface methodology, Chem. Eng. Res. Des., 2011, 90, 776.
  • [18] DAHLAN I., AHMAD A., FADLY M., LEE K.T., KAMARUDDIN A.H., MOHAMED A.R., Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models, J. Hazard. Mater., 2010, 178, 249.
  • [19] SOLOMAN P.A., BASHA C.A., VELAN M., BALASUBRAMANIAN N., MARIMUTHU P., Augmentation of biodegradibility of pulp and paper industry waste water by electrochemical pretreatment and optimization by RSM, Sep. Purif. Technol., 2009, 69, 109.
  • [20] BAHLOUL R., MKADDEM A., SANTO D., POTIRON A., Sheet metal blending optimization using numerical simulation and design of experiments, Int. J. Mech. Sci., 2006, 48, 991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecea29fe-f3a2-498a-b7a3-e76051b37779
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.