PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of the free residual chlorine concentration at the ends of the water supply network: Case study of Souk Ahras city – Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zwiększanie stężenia wolnego chloru na końcach sieci wodociągowej: Przykład miasta Souk Ahras w Algierii
Języki publikacji
EN
Abstrakty
EN
The drinking-water supply sector has mostly targeted the water-borne transmission of pathogens. The most common method employed is the chlorination of drinking-water at treatment plants and in the distribution systems. In Algeria, the use of chlorine in drinking water treatment is a widespread practice. To enhance the concentration of the residual chlorine in the public water-supply system of a part of Souk Ahras city (Faubourg) (Algeria) known by its low concentration of the free residual chlorine (according to the water utility – Algérienne des Eaux: ADE investigation) especially at the point of use, practical steps were carried out. The method is a combination between numerical simulation using EPANET2 software and field measurements. Using statistical analysis the hydraulic model was calibrated and the observed values were very closer to the simulated results. The concentration was improved throughout the network after the injection of the appropriate dose.
PL
Instytucje zaopatrzenia w wodę pitną zwracają szczególną uwagę na obecne w wodzie patogeny. Najczęściej stosowaną metodą usuwania patogenów jest chlorowanie wody w stacjach uzdatniania i w systemie dystrybucji. W Algierii użycie chloru do uzdatniania wody jest powszechnie stosowaną praktyką. Podjęto praktyczne działania, aby zwiększyć stężenie pozostałego chloru w systemie publicznego zaopatrzenia w wodę części miasta Souk Ahras (Faubourg) w Algierii znanym z małego stężenia wolnego chloru (wg badań Algérienne des Eaux: ADE), szczególnie w miejscu odbioru wody. Zastosowana metoda jest kombinacją symulacji za pomocą programu EPANET2 i pomiarów terenowych. Model hydrauliczny był kalibrowany z wykorzystaniem analizy statystycznej, a obserwowane wartości były bardzo bliskie wynikom symulacji. Korzystniejsze stężenie chloru w całej sieci uzyskano po wprowadzeniu odpowiedniej jego dawki.
Wydawca
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Badji Mokhtar Annaba University, Faculty of Science Engineering, Department of Hydraulic, Annaba, Algeria
  • University of Souk Ahras, Laboratory of Sciences and Technical in Water and Environment, 41000 Souk Ahras, Algeria
autor
  • University of Souk Ahras, Laboratory of Sciences and Technical in Water and Environment, 41000 Souk Ahras, Algeria
autor
  • Badji Mokhtar Annaba University, Faculty of Science Engineering, Department of Hydraulic, Annaba, Algeria
autor
  • University of Souk Ahras, Laboratory of Sciences and Technical in Water and Environment, 41000 Souk Ahras, Algeria
autor
  • University of Souk Ahras, Faculty of Sciences and Technology, Department of Civil Engineering, Souk Ahras, Algeria
Bibliografia
  • AL-JASSER A.O. 2007. Chlorine decay in drinking-water transmission and distribution systems: Pipe service age effect. Water Research. Vol. 41. No. 2 p. 387–396.
  • AL-OMARI A.S., CHAUDHRY M.H. 2001. Unsteady-state inverse chlorine modeling in pipe networks. Journal of Hydraulic Engineering. Vol. 127. Iss. 8 p. 669–677.
  • BATTERMAN S., EISENBERG J., HARDIN R., KRUK M.E., LEMOS M.C., MICHALAK A.M., MUKHERJEE B., RENNE E., STEIN H., WATKINS C., WILSON M.L. 2009. Sustainable control of water-related infectious diseases: A review and proposal for interdisciplinary health-based systems research. Environmental Health Perspectives. Vol. 117. No. 7 p. 1023–1032.
  • BOCCELLI D.L., TRYBY M.E., UBER J.G., SUMMERS R.S. 2003. A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research. Vol. 37. No. 11 p. 2654–2666.
  • BOUSLAH S., DJEMILI L., HOUICHI L. 2017. Water quality index assessment of Koudiat Medouar Reservoir, north-east Algeria using weighted arithmetic index method. Journal of Water and Land Development. No. 35 p. 221–228. DOI 10.1515/jwld-2017-0087.
  • CAIRNCROSS S., BLUMENTHAL U., KOLSKY P., MORAES L., TAYEH A. 1996. The public and domestic domains in the transmission of disease. Tropical Medicine and International Health. Vol. 1. No. 1 p. 27–34.
  • CLARK R.M. 1998. Chlorine demand and TTHM formation kinetics: A second-order model. Journal of Environmental Engineering. Vol. 124. No. 1 p. 16–24.
  • CRITTENDEN J., TRUSSEL R., HAND D., HOWE K., TCHBANOGLOUS G. 2005. Water treatment principles and design. 2nd ed. John Wiley & Sons Inc. ISBN 0471110183 pp. 1968.
  • DHAOUADI M., ZERDOUMI R., REBBANI N., GHEID A. 2015. The relationship between chlorine consumption and trihalomethane formation from hydrophobic and transphilic fractions: a comparative study between two dams of east Algeria. Journal of Water Reuse and Desalination. Vol. 5. Iss. 1 p. 72–82.
  • DIGIANO F.A., ZHANG W.D. 2005. Pipe section reactor to evaluate chlorine-wall reaction. Journal of American Water Works Association. Vol. 97. No. 1 p. 74–85.
  • FISHER I., GEORGE K., ARUMUGAM S. 2017. New model of chlorine-wall reaction for simulating chlorine concentration in drinking water distribution systems. Water Research. Vol. 125. No. 15 p. 427–437.
  • FISHER I., KASTL G., SATHASIVAN A. 2012. A suitable model of combined effect ts of temperature and initial condition on chlorine bulk decay in water distribution systems. Water Research. Vol. 46. No. 10 p. 3293–3303.
  • FISHER I., KASTL G., SATHASIVAN A. 2011a. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Research. Vol. 45. No. 16 p. 4896–4908.
  • FISHER I., KASTL G., SATHASIVAN A., JEGATHEESAN V. 2011b. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Critical Reviews in Environmental Science and Technology. Vol. 41. Iss. 20 p. 1843–1882.
  • GALAL G.H. 1996. Chlorine in water disinfection. Pure and Applied Chemistry. Vol. 68. No. 9 p. 1731–1735.
  • HAESTAD M., WALSKI T.M., CHASE D.V., SAVIC D.A., GRAYMAN W., BECKWITH S. 2003. Advanced water distribution modeling and management. 1st ed. Waterbury, CT USA. Haested Press. ISBN 0971414122 pp. 800.
  • HALLAM N.B., WEST J.R., FORSTER C.F., POWELL J.C. SPENCER I. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Research. Vol. 36. No. 14 p. 3479–3488.
  • ISABEL R.S., SOLARIK G., KOECHLING M.T., ANZEK M.H., SUMMERS R.S. 2000. Modeling chlorine decay in treated waters. Proceeding of the American Water Works Association and Water Quality Technology Conference, Denver, CO, USA, June 11–15th p. 1215–1229.
  • KIM H., KIM S., KOO J. 2014. Prediction of chlorine concentration in various hydraulic conditions for a pilot scale water distribution system. Procedia Engineering. Vol. 70 p. 934–942.
  • MONTEIRO L., FIGUEIREDO D., CovAs D., MENAIA J. 2017. Integrating water temperature in chlorine decay modelling: a case study. Urban Water. Vol. 11. No. 10 p. 1097–1101.
  • MONTEIRO L., FIGUEIREDO D., DIAS S., FREITAS R., COVAS D., MENAIA J., COELHO S.T. 2014. Modeling of chlorine decay in drinking water supply systems using EPANET MSX. Procedia Engineering. Vol. 70 p. 1192–1200.
  • NAGATANI T., YASUHARA K., MURATA K., TAKEDA M., NAKAMURA T., FUCHIGAMI T. 2008. Residual chlorine decay simulation in water distribution system. The 7th International Symposium on Water Supply Technology. Yokohama, Japan. 22–24.11.2008 p. 1–11.
  • NAGWAN G.M., MINERVA E.M., HISHAM A.H. 2013. Simulation of chlorine decay in water distribution networks using EPANET – Case study. Civil and Environmental Research. Vol. 3. No. 13 p, 100–116.
  • NILUFAR I., REHAN S., ManUel J. R., CHRISTELLE L. 2016. Assessment of water quality in distribution networks through the lens of disinfection by-product rules. Water SA. Vol. 42. No. 2 p. 337–349.
  • NILUFAR I., MANUEL J.R., FARAHAT A., REHAN S. 2017. Minimizing the impacts of contaminant intrusion in small water distribution networks through booster chlorination optimization. Stochastic Environmental Research and Risk Assessment. Vol. 31. No. 7 p. 1759–1775.
  • OZDEMIR O.N., UCAK A. 2002. Simulation of chlorine decay in drinking-water distribution systems. Journal of Environmental Engineering. Vol. 128. No. 1 p. 31–39.
  • PETER K.J., JEROEN H.J. E., GAYATHRI J., WIM V. D.H., SANDY C., ANDERS D. 2003. Effect of chlorination of drinking-water on water quality and childhood diarrhoea in a village in Pakistan. Journal of Health, Population and Nutrition. Vol. 21. No. 1 p. 26–31.
  • POWELL J.C., CLEMENT J., BRANDT M. 2004. Predictive models for water quality in distribution systems. London, UK. IWA publishing, Alliance House. ISBN 184339913X pp. 106.
  • POWELL J.C., HALLAM N.B., WEST J.R., FORSTER C.F., SIMMS J. 2000. Factors which control bulk chlorine decay rates. Water Research. Vol. 34. No. 1 p. 117–126.
  • Quebec government. 2002. Guidelines for drinking water quality. Quebec. Ministry of Sustainable Development and Parks p. 45–71.
  • RAMOS H., LOUREIRO D., LOPES A., FERNANDES C., COVAS D., REIS L.F., CUNHA M.C. 2010. Evaluation of chlorine decay in drinking water systems for different flow conditions: From theory to practice. Water Resources Management. Vol. 24. No. 4 p. 815–834.
  • RODRIGUEZ M.J., SERODES J.B. 2001. Spatial and temporal evolution of trihalomethanes in three water distribution systems. Water Research. Vol. 35. No. 6. p. 1572–1586.
  • ROSSMAN L.A. 2000. EPANET2 Users Manual. EPA-600/R-00/057. Cincinnati, USA. USEPA National Risk Management Research Laboratory.
  • ROSSMAN L.A., CLARK R.M., GRAYMAN W.M. 1994. Modeling chlorine residuals in drinking-water distribution systems. Journal of Environmental Engineering. Vol. 120 p. 803–820.
  • SHANG F., UBER J.G., ROSSMAN L.A. 2008. Modeling Reaction and Transport of Multiple Species in Water Distribution Systems. Environmental Science and Technology. Vol. 42 p. 808–814.
  • SPEIGHT V., UBER J., GRAYMAN W., MARTEL K., FRIEDMAN M., SINGER P., DIGIANO F.A. 2009. Probabilistic modeling framework for asssessing water quality sampling programs. Denver, Colorado, USA. Water Research Foundation.
  • VASCONCELOS J.J., ROSSMAN L.A., GRAYMAN W.M., BOULOS P.F., CLARK R.M. 1997. Kinetics of chlorine decay. Journal American Water Works Association. Vol. 89. No. 7 p. 54–65.
  • VASCONCELOS J.J., TARAS F.B., ROSSMAN L.A., GRAYMAN W.M., CLARK R.M., GOODRICH J.A. 1995. Characterizing and modeling chlorine decay in distribution systems. A Summary. Proceeding of the American Water Works Association Annual Conference. Anaheim, CA, USA. 18–22.06.1995 pp. 903.
  • VIEIRA P., COELHO S.T., LOUREIRO D. 2004. Accounting for the influence of initial chlorine concentration, TOC, iron and temperature when modeling chlorine decay in water supply. Journal of Water Supply: Research and Technology-AQUA. Vol. 53. No. 7 p. 453–467.
  • WHITE G.C. 1992. Handbook of chlorination and alternative disinfectants. 3rd ed. Toronto. Canada. Van Nostrand Reinhold. ISBN 0442006934 pp. 1308.
  • WHO 2003. Background document for development of WHO guidelines for drinking-water quality. Geneva. World Health Organization. ISBN 92-4-156243-9 pp. 178.
  • WHO 2005. Guidelines for laboratory and field testing of mosquito larvicides. WHO communicable disease control, prevention and eradication. WHO pesticide evaluation scheme pp. 39.
  • YANG J., BEDUHN S., SWAILES D. 2007. IDSE and beyond: Application of computer modeling to distribution system water quality. Journal American Water Works Association. Vol. 99. No. 7 p. 76–82.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ecd57592-08ad-4ff4-a295-a29640c928ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.