PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of Ni and Cr in water and in algae from selected Black Sea bays in the region of Sevastopol

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zawartość Ni i Cr w wodzie i glonach z wybranych zatok Morza Czarnego w rejonie Sewastopola
Języki publikacji
EN
Abstrakty
EN
Trace metals play an important role in functioning of marine and ocean ecosystems. The particular importance of these elements in ecosystems of salt water basins results from their low concentrations in waters of these basins. The content of trace elements in ocean waters is from a few to several dozen times lower than in fresh waters. Such conditions caused that sea organisms developed, by means of evolution, the ability to intensive absorption of trace elements from water in order to meet the physiological demand for them. However, such abilities can cause excessive bioaccumulation of trace elements in ecosystems with elevated their supply, caused by human pressure or enrichment of the water environment from natural sources. The aim of this paper was to assess the nickel and chromium content in water and in algae from selected Black Sea bays near Sevastopol. The samples of water and algae were collected in August 2012 from eight bays in the region of Sevastopol (Galubaja, Kozacha, Kamyshova, Kruhla, Striletska, Pishchana, Pivdenna, the Sevastopolska Bay) as well as one sample from the open sea near Fiolent. Cystoseira barbata and Ulva rigida algae were collected from the same places. The collected water samples were conserved in situ and after being brought to the laboratory their contents of nickel and chromium were determined. The collected algae were rinsed in distilled water, dried, and then homogenized and mineralized. Content of the studied elements was determined in mineralisates by AAS method with electrothermal atomization. It was found that both elements concentrations in water from individual bays were 2–3 times different. The nickel content ranged between 1.74 and 4.14 ·gNi · dm–3, and the chromium content was between 1.56 and 5.97 ·gCr · dm–3. Water from the Striletska Bay contained the highest amount of the studied elements. The nickel content in the studied algae ranged between 1.967 and 12.87 mg · kg–1 d.m., and the chromium content between 0.342 and 7.650 mg · kg–1 d.m. A higher accumulation of these elements was found in Cystoseira barbata than in Ulva rigida. Algae collected in the Sevastopolska Bay contained the highest amount of nickel, and algae from the Pivdenna Bay contained the highest amount of chromium. The content of the studied elements in biomass of the algae was not correlated with their concentration in water. On the other hand, a significant correlation between the nickel content in the algae of both species was found. Values of nickel bioaccumulation coefficients in the studied ecosystems were close to values recorded in environments with high human pressure, whereas in the case of chromium they were very low, much lower than values given in available literature. It was a result of a very high concentration of this element in water, and its moderate content in the algae. Generally, a higher content of the studied elements, both in water and in the algae, was found in all the bays than in samples collected in the open sea. The highest threat of the studied metals was found in the Sevastopolska and Pivdenna Bays.
PL
Metale śladowe odgrywają ważną rolę w funkcjonowaniu ekosystemów morskich i oceanicznych. Szczególne znaczenie tych pierwiastków w ekosystemach zbiorników wód słonych wynika z bardzo małych ich stężeń spotykanym w wodach tych akwenów. Zawartość pierwiastków śladowych w wodach oceanicznych jest od kilku do kilkudziesięciu razy mniejsza niż w wodach słodkich. Takie warunki sprawiły, że organizmy morskie wykształciły na drodze ewolucji zdolność do intensywnego pobierania pierwiastków śladowych z wody w celu zaspokojenia zapotrzebowania fizjologicznego na nie. Takie zdolności mogą jednak powodować nadmierną bioakumulację pierwiastków śladowych w ekosystemach o podwyższonej ich podaży, spowodowanej antropopresją lub wzbogaceniem środowiska wodnego ze źródeł naturalnych. Celem pracy była ocena zawartości niklu i chromu w wodzie oraz glonach z wybranych zatok Morza Czarnego w okolicach Sewastopola. Próbki wody oraz glonów pobrano w sierpniu 2012 r. z ośmiu zatok w rejonie Sewastopola (Gałubaja, Kozacha, Kamyshova, Kruhla, Striletska, Pishchana, Pivdenna, Sewastopolska) oraz jedną próbkę z otwartego morza w okolicach Fioletu. Z tych samych miejsc pobrano glony Cystoseira barbata i Ulva rigida. Pobraną wodę konserwowano na miejscu i po przywiezieniu do laboratorium oznaczono w niej zawartość niklu i chromu. Pobrane glony wypłukano w wodzie destylowanej, suszono, a następnie homogenizowano i mineralizowano. W roztworach oznaczono zawartość badanych pierwiastków metodą ASA z atomizacją elektrotermiczną. Stwierdzono 2–3-krotne różnice stężenia obydwu pierwiastków w wodzie z poszczególnych zatok. Zawartość niklu mieściła się w zakresie od 1,74 do 4,14 ·gNi · dm–3, a chromu w zakresie od 1,56 do 5,97 ·gCr · dm–3. Najwięcej badanych pierwiastków zawierała woda z zatoki Striletska. Zawartość niklu w badanych glonach wahała się w zakresie od 1,967 do 12,87 mg · kg–1 s.m., a chromu od 0,342 do 7,650 mg · kg–1 s.m. Stwierdzono większe nagromadzenie tych pierwiastków w Systoseira barbata niż w Ulva rigida. Najwięcej niklu zawierały glony pobrane w zatoce Sewastopolskiej, a najwięcej chromu zawierały glony z zatoki Pivdenna. Zawartość badanych pierwiastków w biomasie glonów nie była skorelowana z ich stężeniem w wodzie. Stwierdzono natomiast istotną korelację między zawartością niklu w glonach obydwu gatunków. Wartości współczynników bioakumulacji niklu w badanych ekosystemach były zbliżone do notowanych w środowiskach o dużym nasileniu antropopresji, natomiast w przypadku chromu były bardzo małe, dużo mniejsze niż podawane w dostępnej literaturze. Powodem było bardzo duże stężenie tego pierwiastka w wodzie i umiarkowanej jego zawartości w glonach. Generalnie we wszystkich zatokach stwierdzono większą zawartość badanych pierwiastków (zarówno w wodzie, jak i w glonach) niż w próbkach pobranych na otwartym morzu. Największe zagrożenie badanymi metalami stwierdzono w zatokach Sewastopolska i Pivdenna.
Rocznik
Strony
433--446
Opis fizyczny
Bibliogr. 32 poz., wykr., rys., tab.
Twórcy
autor
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31–120 Kraków, Poland, phone: +48 12 662 43 47, fax: +48 12 662 43 41
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31–120 Kraków, Poland, phone: +48 12 662 43 47, fax: +48 12 662 43 41
  • Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. A. Mickiewicza 21, 31–120 Kraków, Poland, phone: +48 12 662 43 47, fax: +48 12 662 43 41
Bibliografia
  • [1] Aparicio-González A, Duarte CM, Tovar-Sánchez A. Trace metals in deep ocean waters: A review. J Marine Syst. 2012;100-101:26-33. DOI.org/10.1016/j.jmarsys.2012.03.008.
  • [2] Mehera Kidston M, Matear R, Baird ME. Phytoplankton growth in the Australian sector of the Southern Ocean, examined by optimising ecosystem model parameters. J Marine Syst. 2013;128:123-137. DOI.org/10.1016/j.jmarsys.2013.04.011.
  • [3] Zhao S, Feng C, Quan W, Chen X, Niu J, Shen Z. Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar Pollut Bull. 2012;64(6):1163-1171. DOI.org/10.1016/j.marpolbul.2012.03.023.
  • [4] Ciacci C, Barmo C, Gallo G, Maisano M, Cappello T, D’Agata A, Leonzio C, Mauceri A, Fasulo S, Canesia L. Effects of sublethal, environmentally relevant concentrations of hexavalent chromium in the gills of Mytilus galloprovincialis. Aquat Toxicol. 2012;120-121(15):109-118. DOI.org/10.1016/j.aquatox.2012.04.015.
  • [5] Qian H, Sun Z, Sun L, Jiang Y, Wei Y, Xie J, Fu Z. Phosphorus availability changes chromium toxicity in the freshwater alga Chlorella vulgaris. Chemosphere. 2013;93(6):885-891. DOI.org/10.1016/j.chemosphere.2013.05.035.
  • [6] Pazos-Capeáns P, Barciela-Alonso MC., Herbello-Hermelo P., Bermejo-Barrera P. Estuarine increase of chromium surface sediments: Distribution, transport and time evolution. Microchem J. 2010;96(2):362 370. DOI.org/10.1016/j.microc.2010.06.007.
  • [7] Oursel B, Garnier C, Durrieu G, Mounier S, Omanović D, Lucas Y. Dynamics and fates of trace metals chronically input in a Mediterranean coastal zone impacted by a large urban area. Mar Pollut Bull. 2013;69(1-2):137-149. DOI.org/10.1016/j.marpolbul.2013.01.023.
  • [8] Huang P, Li T, Li A, Yua X, Hu N. Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Cont Shelf Res. 2014;73:1-13. DOI:10.1016/j.csr.2013.11.014.
  • [9] Pyle G, Couture P. Nickel. Fish Phys A. 2011;31:253-289. DOI.org/10.1016/S1546-5098(11)31005-9.
  • [10] Dittert IM, Vilar VJP, Silva EAB, de Souza Smagu, de Souza AAU, Botelho CMS, Rui AR, Boaventura RAR. Adding value to marine macro-algae Laminaria digitata through its use in the separation and recovery of trivalent chromium ions from aqueous solution. Chem Eng J. 2012;193-194(15):348-357. DOI.org/10.1016/j.cej.2012.04.048.
  • [11] Bermejo R, Vergara JJ, Hernández I. Application and reassessment of the reduced species list index for macroalgae to assess the ecological status under the Water Framework Directive in the Atlantic coast of Southern Spain. Ecol Indicators. 2012;12(1):46-57. DOI.org/10.1016/j.ecolind.2011.04.008.
  • [12] Chakraborty S, Bhattacharya T, Singh G, Maity JP. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotox Environ Safe. 2014;100:61-68. DOI.org/10.1016/j.ecoenv.2013.12.003.
  • [13] Ntengwe FW, Maseka KK. The impact of effluents containing zinc and nickel metals on stream and river water bodies: The case of Chambishi and Mwambashi streams in Zambia. Phys Chem Earth, Parts A/B/C. 2006;31(15-16):814-820. DOI.org/10.1016/j.pce.2006.08.027.
  • [14] Besada V, Andrade JM, Schultze F, González JJ. Heavy metals in edible seaweeds commercialised for human consumption. J Marine Syst. 2009;75(1-2):305–313. DOI.org/10.1016/j.jmarsys.2008.10.010.
  • [15] Denton GRW, Morrison RJ, Bearden BG, Houk P, Starmer JA, Wood HR. Impact of a coastal dump in a tropical lagoon on trace metal concentrations in surrounding marine biota: A case study from Saipan, Commonwealth of the Northern Mariana Islands (CNMI). Mar Pollut Bull. 2009;58(3):424-431. DOI.org/10.1016/j.marpolbul.2008.11.029.
  • [16] Brito GB, de Souza TL, Bressy FC, Moura CWN, Korn MGA. Levels and spatial distribution of trace elements in macroalgae species from the Todos os Santos Bay, Bahia, Brazil. Mar Pollut Bull. 2012;64(10):2238-2244. DOI.org/10.1016/j.marpolbul.2012.06.022.
  • [17] Perez AA, Sara-Farias SS, Strobl MA, Perez BL, Lopez MC, Pineiro A, Otmaro R, Fajardo AM. Levels of essential and toxic elements in Porphyra columbina and Ulva sp from San Jorge Gulf, Patagonia Argentina. Sci Total Environ. 2007;376(1-3):51-59. DOI: 10.1016/j.scitotenv.2006.11.013.
  • [18] Caliceti M, Argese E, Sfriso A, Pavoni B. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere. 2002;47(4):443-454. DOI.org/10.1016/S0045-6535(01)00292-2. [19] Wallenstein FM, Couto RP, Amaral AS, Wilkinson M, Neto AI, Rodrigues AS. Baseline metal concentrations in marine algae from Săo Miguel (Azores) under different ecological conditions – Urban proximity and shallow water hydrothermal activity. Mar Pollut Bull. 2009;58(3):438-443. DOI.org/10.1016/j.marpolbul.2008.11.021.
  • [20] Naser HA. Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar Pollut Bull. 2013;72(1):6-13. DOI.org/10.1016/j.marpolbul.2013.04.030.
  • [21] Rodríguez-Figueroa GM, Shumilin E, Sánchez-Rodríguez I. Heavy metal pollution monitoring using the brown seaweed Padina durvillaei in the coastal zone of the Santa Rosalía mining region, Baja California Peninsula, Mexico. J Appl Phycol. 2009;21(1):19-26. DOI.org/10.1007/s10811-008-9346-0.
  • [22] Dhaneesh KV, Gopi M, Ganeshamurthy R, Ajith Kumar TT, Balasubramanian T. Bio-accumulation of metals on reef associated organisms of Lakshadweep Archipelago. Food Chem. 2012;131(3):985-991. DOI.org/10.1016/j.foodchem.2011.09.097.
  • [23] Melville F, Pulkownik A. Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination. Sci Total Environ. 2007;387(1-3):301-309. DOI.org/10.1016/j.scitotenv.2007.06.036.
  • [24] Pereira Majer A, Varella Petti MA, Navajas Corbisiera T, Portella Ribeiro A, Sawamura Theophilo CY, de Lima Ferreira PA, Lopes Figueira RC. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica). Mar Pollut Bull. 2013; [online] http://dx.doi.org/10.1016/j.marpolbul.2013.12.015 [Access 22 December 2013].
  • [25] Zuykov M, Pelletier E, Harper DAT. Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere. 2013;93(2):201-208. DOI.org/10.1016/j.chemosphere.2013.05.001.
  • [26] Connelly DP, Statham PJ, Anthony H, Knap AH. Seasonal changes in speciation of dissolved chromium in the surface Sargasso Sea. Deep-Sea Res. Pt I. 2006;53:1975-1988. DOI.org/10.1016/j.dsr.2006.09.005.
  • [27] Li S-X, Zheng F-Y, Hong H-S, Deng N-S, Lin L-X. Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater. Mar Environ Res. 2009;67(4-5):199-206. DOI.org/10.1016/j.marenvres.2009.02.001.
  • [28] Bonnand P, James RH, Parkinson IJ, Connelly DP, Fairchild IJ. The chromium isotopic composition of seawater and marine carbonates. Earth Planet Sci Lett. 2013;382:10-20. DOI.org/10.1016/j.epsl.2013.09.001.
  • [29] Maanan M. Biomonitoring of heavy metals using Mytilus galloprovincialis in Safi coastal waters, Morocco. Environ Toxicol. 2007;22(5):525-531. DOI: 10.1002/tox.20301.
  • [30] Akcali I, Kucuksezgin F. A biomonitoring study: Heavy metals in macroalgae from eastern Aegean coastal areas. Mar Pollut Bull. 2011;62(3):637-645. DOI.org/10.1016/j.marpolbul.2010.12.021.
  • [31] Tuzen M, Verep B, Ogretmen AO, Soylak M. Trace element content in marine algae species from the Black Sea, Turkey. Environ Monit Assess. 2009;151(1-4):363-8. DOI:10.1007/s10661-008-0277-7.
  • [32] Strezov A, Nonova T. Influence of macroalgal diversity on accumulation of radionuclides and heavy metals in Bulgarian Black Sea ecosystems. J Environ Radioactiv. 2009;100(2):144-150. DOI.org/10.1016/j.jenvrad.2008.09.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ec694669-833c-4b5a-a4df-4babcf76c575
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.