PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green Microalgae as a Food Source – Growth Kinetics and Biochemical Composition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microalgae are considered as a renewable natural resource that presents important potentialities to be valorized in several fields. This valorization must necessarily start with a thorough study of the biochemical composition of each species of algae. The objective of this study is to study the evolution of the biochemical composition according to the different stages of growth of three biomasses of microalgae (Fragilaria sp, Scenedesmus protuberans, Polytoma Papilatum) collected from Moroccan aquatic environments. Polytoma Papilatum and Scenedesmus protuberans show high protein content of 89.23±2.58%, 90.4±1.45% respectively in addition to low lipid 2.4±0.23, 1.63±0.2% and carbohydrate 8.08±1.25, 8.19±1.07 respectively. On the other hand, Fragilaria sp has high value of carbohydrate 65.73±3.25% as well as low in protein and lipid contents with values of 33.16±1.76, 1.28±0.29 respectively. The monitoring of the growth kinetics allows differentiating three phases on the growth curve: latent phase, exponential growth phase, and stationary phase. Regarding the biochemical composition, the highest content of proteins, carbohydrates and lipids in relation to the harvested biomass reach its maximum at the stationary phase.
Słowa kluczowe
EN
Twórcy
  • Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Science, Ibn-Tofail, University, Kenitra, Morocco
  • Laboratorie Biologie et Santé, Faculty of Science, Ibn-Tofail, University, Kenitra, Morocco
  • Laboratory of Plant, Animal and Agro-Industry Production Laboratory, Faculty of Science, Ibn-Tofail, University, Kenitra, Morocco
  • Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Science, Ibn-Tofail, University, Kenitra, Morocco
Bibliografia
  • 1. John, D.M. 1994. Biodiversity and conservation: an algal perspective. The Phycologist, 38, 5–15.
  • 2. Muller-Feuga, A. 1997. Microalgues marines, les enjeux de la recherche. In: Barbier, (Eds), Ifremer, Plouzané, France, 35.
  • 3. Niccolai, A., Zittelli, G. C., Rodolfi, L., Biondi, N., Tredici, M.R. 2019. Microalgae of interest as food source: Biochemical composition and digestibility, Alg. Res., 42, 101617.
  • 4. Anjos, M., Fernandes, B.D., Vicente, A.A., Teixeira, J.A., Dragone, G. 2013. Optimization of CO2 biomitigation by Chlorella vulgaris. Bioresour. Technol., 139, 149–154.
  • 5. Benavente-Valdés J.R., Aguilar C., Contreras-Esquivel J.C., Méndez-Zavala, A., Montañez J. 2016. Strategies to enhance the production of photosynthetic pigments and lipids in Chlorophycae species. Biotechnol. Rep., 10, 117–125
  • 6. D’Alessandro E.B., Antoniosi Filho N.R. 2016. Concepts and studies on lipid and pigments of microalgae: a review, Renew. Sust. Energ. Rev., 58, 832–841.
  • 7. Kord, A., Debbari Z., Ghobrini M., et Chader S. 2012. Caractérisation des acides gras de la Chlorelle en vue d’une application bioénergétique. Rev. des Ener. Ren., 12, 253–256.
  • 8. Dos Santos M., Martins M.A, Coimbra D.J.S., Gates R.S., Corrêdo L.P. 2013. Rheological behavior of Chlorella sp. e Scenedesmus sp. cultures in different biomass concentrations, Eng. Agríc. Jaboticabal, 33(5), 1063–1071
  • 9. Lowry, O., Rosebrough, N., Farr, A., Randall, R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1), 265–275.
  • 10. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.T., Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3), 350–356.
  • 11. Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8), 911–917
  • 12. Morris, I. 1981. Photosynthetic products, physiological state, and phytoplankton growth. In Physiological bases of Phytoplankton Ecology. Piatt T. (Éd.), Can. Bull.Fish. Aquat. Sci., 210, 83–102.
  • 13. Belkoura, M., Benider, A. 1997. Influence de la température, de l’intensité lumineuse et du stade de croissance sur la composition biochimique de Chlorella sorokiniana Shihira and Krauss. Annls. Limnol., 33(1), 3–11.
  • 14. Tahiri, M., Benider A., Belkoura M., Dauta A. 2000. Caractérisation biochimique de l’algue verte Scenedesmus abundans : influence des conditions de culture. Annls. Limnol., 36, 3–12
  • 15. Hu, Q. 2004. Environmental effects on cell composition, in: A. Richmond (Ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science, 83–93.
  • 16. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert M., Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 54, 621–639.
  • 17. Khozin-Goldberg, I., Cohen, Z. 2011. Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie, 93, 91–100.
  • 18. Msanne, J., Xu, D., Konda, A.R., Casas-Mollano, J.A., Awada, T., Cahoon, E.B., Cerutti, H. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry, 75, 50–59.
  • 19. FAO/WHO. 1991. Protein Quality Evaluation in Human Diets, Report of a Joint Expert Consultation, Food and Agriculture Organization of the United Nations, Paper No., 51.
  • 20. FAO/WHO. 2007. Protein and Amino Acid Requirements in Human Nutrition, World Health Organization Technical Report Series, Paper No. 935
  • 21. Yoo, Y.D., Jeong, H.J., Kang, N.S., Song, J.Y., Kim, K.Y., Lee, K.T., Kim, J.H. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol., 57, 145–158.
  • 22. Cassidy, K. 2011. Evaluating algal growth at different temperatures- Theses and Dissertations. Biosys. and Agri. Engi., 3.
  • 23. Aurore, V. 2013. Production en photobioréacteurs et caractérisation structurale d’un exopolysaccharide produit par une microalgue rouge, Rhodella violacea : application à l’obtention d’actifs antiparasitaires. Alimentation et Nutrition. Université Blaise Pascal. Clermont-Ferrand II, Français. P, 44.
  • 24. George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C. et al. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus. A potential strain for bio-fuel production. Biores. Techno., 171, 367–374.
  • 25. Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., Mishra, S. 2014. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol., 156, 146–154.
  • 26. Sabatie J., Choplin L., Paul F., Monsan P. 1986. The effect of synthesis temperature on the Theological properties of native dextran. Biotechnology Letters, 8(6), 425–430.
  • 27. Dermoun D. 1987. Ecophysiologie de Porphyridium cruentum : validation expérimentale d’un modèle de croissance. Etude de la production de polysaccharide. Thèse de Doctorat de l’Université de Technologie de Compiègne, France, 137.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-eb44a181-14ae-4dd6-95c4-c3ba5f364d68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.