Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Adsorption studies were conducted to assess the feasibility of ferric hydroxide-based material for treatment of highly arsenic-contaminated effluents. The experiments were performed in a batch adsorption regime using a synthetic aqueous solution. The contact time between arsenic ions and the adsorbent, initial concentration of arsenic in treated solution, temperature of solution and adsorbent dose had a significant effect on the adsorption performance in the system. Both the mechanism of the process involved and the rate of As(III) and As(V) adsorption were analyzed based on pseudo-firstand pseudo-second order kinetic models. The adsorption data at constant temperature were described by the Langmuir and Freundlich isotherm equation, and the theoretical adsorption capacity of ferric hydroxide was determined to be 43.75 mg/g and 44.04 mg/g for arsenic(III) and (V), respectively. The estimated thermodynamic parameters, including changes in free energy, enthalpy and entropy, revealed that the adsorption is spontaneous and endothermic under applied experimental conditions.
Czasopismo
Rocznik
Tom
Strony
117--129
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] JAISHANKAR M., TSETEN T., ANBALAGAN N., MATHEW B.B., BEEREGOWDA K.N., Toxicity, mechanism and health effects of some heavy metals, Inter. Toxicol., 2014, 7 (2), 60.
- [2] SINGH R., GAUTAM N., MISHRA A., GUPTA R., Heavy metals and living systems. An overview, Indian J. Pharmacol., 2011, 43 (3), 246.
- [3] MANDAL B.K., SUZUKI K.T., Arsenic round the world. A review, Talanta, 2002, 58 (1), 201.
- [4] RAHMAN M.M., CHOWDHURY U.K., MUKHERJEE S.C., MONDAL B.K., PAUL K., LODH D., Chronic arsenic toxicity in Bangladesh and West Bengal, India. A review and commentary, J. Toxicol. Clin. Toxic., 2001, 39 (7), 683.
- [5] JAIN C.K., ALI I., Arsenic. Occurrence, toxicity and speciation techniques, Water Res., 2000, 34 (17), 4304.
- [6] BISSEN M., FRIMMEL F.H., Arsenic – a review. Part 1. Occurrence, toxicity, speciation, mobility, Acta Hydroch. Hydrob., 2003, 31 (1), 9.
- [7] SMEDLEY P.L., KINNIBURGH D.G., A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 2002, 17 (5), 517.
- [8] MURCOTT S., Arsenic Contamination in the World, IWA Publishing, London 2012.
- [9] SINGH R., SINGH S., PARIHAR P., SINGH V.P., PRASAD S.M., Arsenic contamination, consequences and remediation techniques. A review, Ecotox. Environ. Safe., 2015, 112, 247.
- [10] MOHAN D., PITTMAN C.U., Arsenic removal from water/wastewater using adsorbents. A critical review, J. Hazard. Mater., 2007, 142 (1, 2), 1.
- [11] BAIG S.A., SHENG T.T., HU Y.J., XU J., XU X.H., Arsenic removal from natural water using low cost granulated adsorbents. A review, Clean Soil Air Water, 2015, 43 (1), 13.
- [12] GILES D.E., MOHAPATRA M., ISSA T.B., ANAND S., SINGH P., Iron and aluminium based adsorption strategies for removing arsenic from water, J. Environ. Manage., 2011, 92 (12), 3011.
- [13] SZLACHTA M., WÓJTOWICZ P., Adsorptive removal of arsenic species from aqueous solutions using granular ferric hydroxide, Ochr. Śr., 2016, 38 (4), 47 (in Polish).
- [14] SAHA B., BAINS R., GREENWOOD F., Physicochemical characterization of granular ferric hydroxide (GFH) for arsenic(V) sorption from water, Sep. Sci. Technol., 2005, 40 (14), 2909.
- [15] BADRUZZAMAN M., WESTERHOFF P., KNAPPE D.R.U., Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH), Water Res., 2004, 38 (18), 4002.
- [16] THIRUNAVUKKARASU O.S., VIRARAGHAVAN T., SUBRAMANIAN K.S., Arsenic removal from drinking water using granular ferric hydroxide, Water SA, 2003, 29 (2), 161.
- [17] QI P.F., PICHLER T., Closer look at As(III) and As(V) adsorption onto ferrihydrite under competitive conditions, Langmuir, 2014, 30 (37), 11110.
- [18] OCIŃSKI D., JACUKOWICZ-SOBALA I., MAZUR P., RACZYK J., KOCIOŁEK-BALAWEJDER E., Water treatment residuals containing iron and manganese oxides for arsenic removal from water. Characterization of physicochemical properties and adsorption studies, Chem. Eng. J., 2016, 294, 210.
- [19] RAVEN K.P., JAIN A., LOEPPERT R.H., Arsenite and arsenate adsorption on ferrihydrite. Kinetics, equilibrium, and adsorption envelopes, Environ. Sci. Technol., 1998, 32 (3), 344.
- [20] CUSTODIO T., GARCIA J., MARKOVSKI J., MCKAY GIFFORD J., HRISTOVSKI K.D., OLSON L.W., Ranking nano-enabled hybrid media for simultaneous removal of contaminants with different chemistries. Pseudo-equilibrium sorption tests versus column tests, Sci. Total Environ., 2017, 605–606, 166.
- [21] BANERJEE K., AMY G.L., PREVOST M., NOUR S., JEKEL M., GALLAGHER P.M., BLUMENSCHEIN C.D., Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH), Water Res., 2008, 42 (13), 3371.
- [22] SZLACHTA M., WÓJTOWICZ P., Treatment of arsenic-rich waters using granular iron hydroxides, Desalin. Water Treat., 2016, 57 (54), 26376.
- [23] LIU C.H., CHUANG Y.H., CHEN T.Y., TIAN Y., LI H., WANG M.K., ZHANG W., Mechanism of arsenic adsorption on magnetite nanoparticles from water. Thermodynamic and spectroscopic studies, Environ. Sci. Technol., 2015, 49 (13), 7726.
- [24] PARTEY F., NORMAN D., NDUR S., NARTEY R., Arsenic sorption onto laterite iron concretions. Temperature effect, J. Colloid Interf. Sci., 2008, 321 (2), 493.
- [25] MILONJIC S.K., A consideration of the correct calculation of thermodynamic parameters of adsorption, J. Serb. Chem. Soc., 2007, 72 (12), 1363.
- [26] TRAN H.N., YOU S.J., CHAO H.P., Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods. A comparison study, J. Environ. Chem. Eng., 2016, 4 (3), 2671.
- [27] GHOSAL P.S., GUPTA A.K., An insight into thermodynamics of adsorptive removal of fluoride by calcined Ca–Al–(NO3) layered double hydroxide, RSC Adv., 2015, 5 (15), 105889.
- [28] SZLACHTA M., WÓJTOWICZ P., Implementation of ferric hydroxide-based media for removal of toxic metalloids, E3S Web of Conferences, 2017, 22 (175), ASEE17.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ead69a7d-54bc-4717-9d66-9be57c76045e