Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a novel solution based on dairy wastewater sorption on a biochar substrate obtained through thermal decomposition of Chlorella sp. algae biomass. The algal biomass obtained in the culture medium containing wastewater from dairy production was separated from the culture medium through sedimentation and centrifugation and then freeze-dried. After freeze-drying, the dry biomass was pyrolysed at 600 °C in a CO 2 atmosphere.The EDS analysis showed that the oxygen-tocarbon (O/C) and nitrogen-to-carbon (N/C) ratios in the obtained material averaged 0.24 and 0.54 respectively. The arrangement and structure of the obtained biochar was evaluated using Raman spectroscopy. The observed spectra revealed the presence of D bands located at 1346–1354 cm -1 and corresponding to disordered carbon structures, as well as G bands located at 1585–1594 cm -1 and corresponding to tensile vibrations. The D/G intensity ratio was determined at 0.28. The next phase of the research involved sorption of dairy wastewater from cleaning processes containing 1 g of the obtained biochar using solid phase extraction. The study results confirmed high sorption efficiency of the obtained algal biochar. Turbidity was reduced by 93%, suspension by 88%, sulphates by 61%, chlorides by 80%, and organic carbon by 17%. The research confirmed the possibility of using wastewater from dairy production as a natural culture medium for Chlorella sp. algae cultivation to manufacture valuable biochar, which could be used as a sorption bed in the treatment of dairy wastewater from cleaning processes.
Rocznik
Tom
Strony
art. no. e58
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network – Institute of Sustainable Technologies, Bioeconomy and Ecoinnovation Centre, Pułaskiego 6/10, 26-660 Radom, Poland
autor
- Łukasiewicz Research Network – Institute of Sustainable Technologies, Bioeconomy and Ecoinnovation Centre, Pułaskiego 6/10, 26-660 Radom, Poland
Bibliografia
- 1. Al-Dhabi N.A., Arasu M.V., 2022. Biosorption of hazardous waste from the municipal wastewater by marine algal biomass. Environ. Res., 204, Part B, 112115. DOI: 10.1016/J.envres.2021.112115.
- 2. Chen W., Yang H., Chen Y., Xia M., Yang Z., Wang X., Chen H., 2017. Algae pyrolytic poly-generation: influence of component difference and temperature on products characteristics. Energy, 131, 1–12. DOI: 10.1016/j.energy.2017.05.019.
- 3. Dziosa K., Makowska M., 2017. Zastosowanie surowych ścieków mleczarskich jako pożywki do hodowli mikroalg Chlorella sp. Inżynieria Ekologiczna, 18, 5–9. DOI: 10.12912/2392062.
- 4. Hou Z., Luo M., Yang Yi., Zhou Ji., Liu Li., Cai J., 2021. Algaebased carbons: Design, preparation and recent advances in their use in energy storage catalysis and adsorpion. New Carbon Mater., 36, 278–303. DOI: 10.1016/S1872-5805(21)60020-3.
- 5. Huo S., Wang Z., Zhu S., Shu Q., Zhu L., Qin L., Zhou W., Feng P., Zhu F., Yuan Z., Dong R., 2018. Biomass accumulation of Chlorella Zofingiensis G1 cultures grown out-doors in photobioreactors. Front. Energy Res., 6, 49. DOI: 10.3389/fenrg.2018.00049.
- 6. Jeguirim M., Limousy L., 2017. Biomass chars: elaboration, characterization and applications. Energies, 10, 2040. DOI: 10.3390/en10122040.
- 7. Kusmayadi A., Lu P., Huang C., Leong Y.K., Yen H., Chang Y., 2022. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Chemosphere, 291 Part 1, 133057. DOI: 10.1016/j.chemosphere.2021.133057.
- 8. Law X., Cheah W., Chew K.W., Ibrahim M.F., Park Y.-K., Ho S.H., Show P.L., 2022. Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications. Environ. Res., 204 A, 111966. DOI: 10.1016/j.envres.2021.111966.
- 9. Makowska M., Dziosa K., 2018. Wytwarzanie biomasy mikroalg w fotobioreaktorze zbiornikowym z wymuszanym napowietrzaniem. Acta Scientiarum Polonorum. Biotechnologia, 17, 37–42.
- 10. Meng F., Wang D., 2020. Effects of vacuum freeze drying pretreatment on biomass and biochar properties. Renewable Energy, 155, 1–9. DOI: 10.1016/j.renene.2020.03.113.
- 11. Milledge J.J., Heaven S., 2014. Methods of energy extraction from microalgal biomass: a review. Rev. Environ. Sci. Bio/Technol., 13, 301–320. DOI: 10.1007/s11157-014-9339-1.
- 12. Pan P., Hu Ch., Yang W., Li Y., Dong L., Zhu L., Tong D., Qing R., Fan Y., 2010. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour. Technol., 101, 4593–4599. DOI: 10.1016/j.biortech. 2010.01.070.
- 13. Parab N., Tomar V., 2012. Raman spectroscopy of algae: a review. J. Nanomed. Nanotechnol., 3, 2. DOI: 10.4172/2157-7439.1000131.
- 14. Sun J., Norouzi O., Mašek O., 2022. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol., 346, 126258. DOI: 10.1016/j.biortech.2021.126258.
- 15. Szwarc K., Szwarc D., Rokicka M., Zieliński M., 2017. Wykorzystanie zbilansowanego odcieku z reaktora beztlenowego do hodowli glonów Chlorella Vulgaris na cele biomasowe. Inżynieria Ekologiczna, 18, 159–166. DOI: 10.12912/23920629/68328.
- 16. Ślęzak E., Poluszyńska J., 2018. Możliwości sorpcyjne biowegla w usuwaniu zanieczyszczeń ze środowiska wodnego. Prace Instytutu Ceramiki i Materiałów Budowlanych, 11, 62–72.
- 17. Urbanowska A., Kotas P., Kabsch-Korbutowicz M., 2019. Charakterystyka i metody zagospodarowania masy pofermentacyjnej powstającej w biogazowniach. Ochrona Środowiska, 41, 39–45.
- 18. Vieira Costa J.A., Zaparoli M., Aguiar Cassuriaga A.P., Barcelos Cardias B., da Silva Vaz B., Greque de Morais M., Botelho Moreira J., 2023. Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy. Enzyme Microb. Technol., 169, 110281. DOI: 10.1016/j.enzmictec.2023.110281.
- 19. Wu P., Singh B.P., Wang H., Jia Z., Wang Y., Chen W., 2023. Bibliometric analysis of biochar research in 2021: a critical review for development, hotspots and trend directions. Biochar, 5, 6. DOI: 10.1007/s42773-023-00204-2.
- 20. Xu D., Lin J., Ma R., Hou J., Sun S., Ma N., 2023. Fast pyrolysis of algae model compounds for bio-oil: in-depth insights into the volatile interaction mechanisms based on DFT calculations. Fuel, 333, 126449. DOI: 10.1016/j.fuel.2022.126449.
- 21. Yu H., Jang J.-Y., Nam I.-.H., Jo H., Yim G.-J., Song H., Cho D.W., 2023. Carbon dioxide-assisted thermochemical conversion of magnetically harvested harmful algae into syngas and metal biochar. Bioresour. Technol., 387, 129705. DOI: 10.1016/j.biortech.2023.129705.
- 22. Zander Z., Dajnowiec F., 2009. Gospodarka wodą w zakładzie mleczarskim. Agro Przemysł, 3, 50–52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ea3f1845-1944-4071-ae0d-6bb6dfd3da87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.