Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper provides comprehensive information on the recent progress of the use of potassium ferrate(VI) (K2FeO4) for the removal of selected pollutants from water and wastewater. K2FeO4 provides great potential for diverse environmental applications without harm to the natural environment. Therefore K2FeO4 was used in removal of cyanides from gold ore purification processes, degradation of dyes and organic compounds in wastewater and algae removal in the water treatment process. The quoted research results indicate that K2FeO4 due to its strong oxidizing and coagulating properties, could be an alternative to the use of Advanced Oxidation Processes (AOPs) or be an additional option to conventional methods of water and wastewater treatment. As a result of using K2FeO4, the emerge intermediates of the impurities decomposition are nontoxic or show less toxicity than the initial substrates. The use of K2FeO4 is also associated with certain limitations of technical and technological nature, which requires further research in order to use its high efficiency in the degradation of various types of contamination on a technical scale.
Czasopismo
Rocznik
Tom
Strony
129--137
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
- MSc; Graduate of Silesian Environmental Doctoral Studies of the Central Mining Institute in Katowice, Plac Gwarków 1, 40-166, Katowice, Poland
autor
- Prof.; Institute of Water and Wastewater Engineering, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
- PhD Eng.; Chemiqua Company, Skawińska 25/1, 31-066 Kraków, Poland
autor
- MSc; AHIS S.A., Oswobodzenia 1, 40-403 Katowice, Poland
Bibliografia
- [1] Dąbek, L., Ozimina, E., & Piechta-Oleś, A. (2013). Badania nad usuwaniem barwnych związków organicznych ze ścieków z przemysłu włókienniczego (Research on the removal of colored organic compounds from textile wastewater). Rocznik Ochrona Środowiska, 15, 1164-1176.
- [2] Khan, R., Bhawana P., & Fulekar M.H. (2013). Microbial decolorization and degradation of synthetic dyes: a review. Reviews in Environmental Science and Bio/Technology, 12(1), 75-97.
- [3] Li, C., Li, X. Z., & Graham, N. (2005). A study of preparation and reactivity of potassium ferrate. Chemosphere, 61(4), 537-543.
- [4] Kamachi, T., Kuono, T., & Yoshizawa, K. (2005). Participation of multi oxidants in the pH dependence of the reactivity of ferrate(VI). Journal of Organic Chemistry, 70(11), 4380-4388.
- [5] Sharma, V. K. (2002). Potassium ferrate(VI): an environmentally friendly oxidant. Advances in Environmental Research, 6(2), 143-156.
- [6] Sharma, V. K. (2003). Destruction of cyanide and thiocyanate by ferrate [iron (VI)]. The European Journal of Mineral Processing and Environmental Protection, 3(3), 301-308.
- [7] Sharma, V. K., Rivera,W., Smith, J. O., & O’Brien, B. (1998). Ferrate(VI) oxidation of aqueous cyanide. Environmental Science and Technology, 32(17), 2608-2613.
- [8] Costarramone, N., Kneip, A., & Castetbon A. (2010). Ferrate(VI) oxidation of cyanide in water. Environmental Technology, 25(8), 945-955.
- [9] Lee, S. M., & Tiwari, D. (2009). Application of ferrate (VI) in the treatment of industrial wastes containing metal-complexed cyanides: A green treatment. Journal of Environmental Sciences, 21, 1347-1352.
- [10] Sharma, V. K., Bloom, J. T., & Joshi, V. N. (1998). Oxidation of ammonia by ferrate(VI). Journal of Environmental Science and Health, Part A, 33, 635-650.
- [11] Sharma, V. K. (2002). Ferrate(VI) oxidation of pollutants: a remix pulse radiolysis. Radiation, Physics and Chemistry, 65(4), 349-355.
- [12] Gonzalez-Merchan, C., Genty, T., Bussiere, B., Potvin, R., Paquin, M., Benhammadi, M., & Neculita, C. M. (2016). Ferrates performance in thiocyanates and ammonia degradation in gold mine effluents. Minerals Engineering, 95, 124-130.
- [13] Yngard, R., Sharma, V. K., Filip, J., & Zboril, R. (2008). Ferrate(VI) oxidation of weak acid dissociable cyanides. Environmental Science and Technology, 42(8), 3005-3010.
- [14] Tiwari D., & Lee, S. M. (2011). Ferrate(VI) in the treatment of wastewaters: a new generation green chemical. Waste Water - Treatment and Reutilization, IntechOpen, 241-276.
- [15] Sharma, V. K. (2011). Oxidation of inorganic contaminants by ferrates (VI, V and IV)-kinetics and mechanisms: a review. Journal of Environmental Management, 92(4), 1051-1073.
- [16] Yngard, R., Damrongsiri, S., Osathaphan, K., & Sharma, V.K. (2007). Ferrate(VI) oxidation of zinccyanide complex. Chemosphere, 69(5), 729-735.
- [17] Osathaphan, K., Kittisarn, W., Chatchaitanawat, P., Yngard, R., Kim, H., & Sharma K. (2014). Oxidation of Ni(II)-cyano and Co(III)-cyano complexes by Ferrate (VI): Effect of pH. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 49(12), 1380-1384.
- [18] Sharma, V. K., Burnett, C. R., Yngard, R. A., & Cabelli, D. E. (2005). Iron(VI) and iron(V) oxidation of copper(I) cyanide. Environmental Science and Technology, 39(10), 3849-3854.
- [19] Sharma, V. K., Smith, J. O., & Millero, F. J. (1997). Ferrate(VI) oxidation of hydrogen sulfide. Environmental Science and Technology, 31(9), 2486-2491.
- [20] Talaiekhozani, A., Eskandari, Z., Bagheri, M. & Talaie,M. R. (2016). Removal of H2S and COD using UV, Ferrate and UV/Ferrate from municipal wastewater. Journal of Human, Environment and Health Promotion, 2(1), 1-8.
- [21] Johnson, M. D., & Bernard, J. (1992). Kinetics and mechanism of the ferrate oxidation of sulfite and selenite in aqueous media. Inorganic Chemistry, 31(24), 5140-5142.
- [22] Read, J. F., John, J., MacPherson, J., Schaubel, C., & Theriault, A. (2001). The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate. Part I, Sulfite, thiosulfate and dithionite ions. Inorganica Chimica Acta, 315(1), 96-106.
- [23] Johnson, M. D., & Read, J. F. (1996). Kinetics and mechanism of the ferrate oxidation of thiosulfate and other sulfur-containing species. Inorganic Chemistry, 35(23), 6795-6799.
- [24] Read, J. F., Bewick, S. A., Oikle, S. E., Schaubel, C., Taylor, S. N., Theriault, A., & Watson, K. (2005a). The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds Part II, Tetrathionate ions. Inorganic Reactions Mechanism, 5, 265-280.
- [25] Read, J. F., Bewick, S. A., Donather, S. C., Eelman, M. D., Oikle, S. E., Schaubel, C., Tam, N. C., Theriault, A., &Watson, K. (2005b). The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate Part III - trithionate and pentathionate ions. Inorganic Reactions Mechanism, 5, 281-304.
- [26] Fan,M., Li, N., Chuang, C., Shi, Y., Brown, R. C., van Leeuwen, J., Banerjee, K., Qu, J., & Chen, H. (2007). Arsenite oxidation by ferrate in aqueous solution, Trace Metals and Other Contaminants in the Environment, 9, 623-639.
- [27] Lee, Y., Um, I., & Yoon, J. (2003). Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environmental Science Technology, 37(24), 5750-5756.
- [28] Crittenden, J., Trussell, R., Hand, D., Howe, K., & Tchobanoglous, G. (2011). Water treatment: Principles and Design, John Wiley & Sons.
- [29] Song, Y., Deng, Y., & Jung, C. (2016).Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment. Chemosphere, 146, 145-153.
- [30] Qu, J. H., Liu, H. J., Liu, S. X., & Lei, P. J. (2003). Reduction of fulvic acid in drinking water by ferrate. Journal of Environmental Engineering, ASCE 129(1), 17-24.
- [31] Jiang, J. Q., & Wang, S. (2003). Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environmental Engineering Science, 20(6), 627-633.
- [32] Lim, M., & Kim, M. J. (2009). Removal of natural organic matter from river water using potassium ferrate( VI). Water, Air & Soil Pollution, 200(1-4), 181-189.
- [33] Graham, N., Khoi, T., & Jiang, J. Q. (2015). Oxidation and coagulation of humic substances by potassium ferrate. Water Science & Technology, 62(4), 929-936.
- [34] Gan, W., Sharma, V. K., Zhang, X., Yang, L., & Yang X. (2015). Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination, Journal of Hazardous Materials, 292, 197-204.
- [35] Sun, S., Pang, S. Y., Jiang, J., Ma, J., Huang, Z., Zhang, J., Liu, Y., Xu, C., Liu, Q., & Yuan, Y. (2018). The combination of ferrate(VI) and sulfite as a novel advanced oxidation process for enhanced degradation of organic contaminants. Chemical Engineering Journal, 333, 11-19.
- [36] Singh, L., & Singh, V. P. (2015). Textile Dyes Degradation: A Microbial Approach for Biodegradation of Pollutants, Microbial Degradation of Synthetic dyes in Waste Waters. Environmental Science and Engineering, 187-204.
- [37] Revankar, M. S., & Lele, S. S. (2007). Synthetic dyes decolorization by white rot fungus, Ganoderma sp., WR-1. Bioresource Technology, 98(4), 775-780.
- [38] Lubello, C., & Gori, R. (2004). Membrane bio-reactor for advanced textile wastewater treatment and reuse. Water Scientific Technology, 50(2), 113-119.
- [39] Secula, M. S., Cretescu, I., & Petrescu, S. (2011). An experimental study of indigo carmine removal from aqueous solution by electrocoagulation. Desalination, 277(1-3), 227-235.
- [40] Wilcock, A., Brewster, M., & Tincher, W. (1992). Using electrochemical technology to treat textile wastewater: three case studies. American Dyestuff Reporter, 81(8), 15-16.
- [41] Barbusiński, K., & Majewski, J. (2003). Discoloration of azo dye Acid Red 18 by Fenton reagent in the presence of iron powder. Polish Journal of Environmental Studies, 12(2), 151-155.
- [42] Barbusiński, K. (2005). The modified Fenton process for decolorization of dye wastewater. Polish Journal of Environmental Studies, 14(3), 281-285.
- [43] Barisci, S., Sarkka, H., Sillanpaa, M., & Dimoglo, A. (2016). The treatment of greywater from a restaurant by electrosynthesized ferrate (VI) ion. Desalination Water Treatment, 57(24), 11375-11385.
- [44] Ciabatti, I., Tognotti, F., & Lombardi, L. (2010). Treatment and reuse of dyeing by potassium ferrate. Desalination, 250(1), 222-228.
- [45] Li, G., Wang, N., Liu, B., & Zhang, X. (2009). Decolorization of azo dye Orange II by ferrate(VI)- hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate. Desalination, 249(3), 936-941.
- [46] Xu, G. R., Zhang, Y. P., & Li, G. B. (2009). Degradation of azo dye active brilliant red X-3B by composite ferrate solution. Journal of Hazardous Materials, 161(2-3), 1299-1305.
- [47] Han, Q., Dong, W., Wang, H., Liu, T., Sun, F., Ying, Y., & Yan, X. (2013). Effects of coexisting anions on decolorization of azo dye X-3B by ferrate(VI) and a comparative study between ferrate(VI) and potassium permanganate. Separation and Purification Technology, 108, 74-82.
- [48] Thomas, M., Barbusiński, K., Kliś, S., Szpyrka, E., & Chyc, M. (2018). Synthetic textile wastewater treatment using potassium ferrate(VI) - application of Taguchi method for optimization of the experiment. Fibres & Textiles in Eastern Europe, 26, 3(129), 111-117.
- [49] Ma, J., & Liu, W. (2002). Effectiveness and mechanism of potassium ferrate(VI) for algae removal by coagulation. Water Research, 36(4), 871-878.
- [50] Kabziński, A. (2007). Sinice i ich toksyny w uzdatnianiu wód. Wpływ jakości wody i procesów technologicznych na efektywność usuwania mikrocystyny z wody (Cyanobacteria and their toxins in water treatment. Influence of water quality and technological processes on the effectiveness of microcystin removal from water). Aura, 11, 4-7.
- [51] Deng, Y., Wu, M., Zhang H., Zheng, L., Acosta, Y., & Hsu, T. D. (2017). Addressing harmful algal blooms (HABs) impacts with ferrate(VI): simultaneous removal of algal cells and toxins for drinking water treatment. Chemosphere, 186, 757-761.
- [52] Shin, J., Lee, D., Hwang, T. M., & Lee, Y. (2018). Oxidation kinetics of algal-derived taste and odor compounds during water treatment with ferrate(VI). Chemical Engineering Journal, 334, 1065-1073.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9288121-feec-4cc8-8f33-c5d8f92adedd