PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of product quality risks by qualimetric methods using functionally dependent statistics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In modern production systems, ensuring high product quality while minimising risk is a critical challenge. Traditional quality assessment methods often rely on expert judgment or complex models, which may introduce subjectivity or require large datasets. This study aims to develop a universal methodology for assessing product quality risks using a mathematically grounded approach that eliminates the need for expert-based evaluations and can be easily implemented in various industrial contexts. A qualimetric method based on nonlinear mathematical dependence using the error function “erf” is proposed. The method transforms measured quality indicators into a dimensionless scale and derives functionally dependent statistics under the assumption of a uniform distribution. The model is validated through analytical derivations and numerical experiments on piston components in precision mechanical engineering. A new mathematical model was established to calculate the probability density function of transformed quality indicators. The methodology enables the estimation of the probability that a quality indicator will fall within a risky range near tolerance limits. Numerical experiments confirmed the validity of the model, demonstrating its applicability to real-world production scenarios and its alignment with known principles of qualimetry. The proposed method provides a universal, objective, and practical tool for risk-based quality assessment. It can be applied across different industries, integrated into existing quality management systems, and used to support decision-making in production control. Future research should expand the model to accommodate non uniform distributions and explore its integration with real-time quality monitoring systems.
Rocznik
Strony
68--82
Opis fizyczny
Bibliogr. 65 poz., tab., wykr.
Twórcy
  • National Aerospace University “Kharkiv Aviation Institute”, 17 Vadym Manko st., 61000 Kharkiv, Ukraine
  • Mykolas Romeris University, 20 Ateities st., Vilnius, Lithuania
  • Vilnius Gediminas Technical University, 11 Saulėtekio al., 10223 Vilnius, Lithuania
  • Vilnius Gediminas Technical University, 11 Saulėtekio al., 10223 Vilnius, Lithuania
  • National Aerospace University “Kharkiv Aviation Institute”, 17 Vadym Manko st., 61000 Kharkiv, Ukraine
  • V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine
Bibliografia
  • Arroyo-Montaño, M., Erazo-Álvarez, J. & Zapata-Sánchez, P. (2025). Optimizing operational efficiency in the footwear industry through continuous audit moni toring. Revista Metropolitana de Ciencias Aplicadas, 8(2), 33-44. doi: 10.62452/09xyw841
  • Aven, T. (2023). On the gap between theory and practice in defining and understanding risk. Safety Science, 168, 106325. doi: 10.1016/j.ssci.2023.106325
  • Bubela, T., Michalowska, J., Hots, N., Yatsuk, V., Seheda, O., Ivanyshyn, A., Sus, B. & Kozynets, A. (2025). Risk assessment of the functioning of cyber-physical monitoring systems. In Z. Hu et al. (eds), Artificial Intelligence, Medical Engineering and Education, 65, 290-300. doi: 3233/ATDE250138
  • Burduk, A. & Pihnastyi, O. (2025). Risk assessment of a pro duction system based on a technological description model. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 28(2). doi: 10.17531/ein/204577
  • Cai, B., Ye, Z., Chen, S. & Liang, X. (2024). Reducing safety risks in construction tower crane operations: A dy namic path planning model. Applied Sciences, 14(22), 10599. doi: 10.3390/app142210599
  • Canon, J., Broussard, T., Johnson, A., Singletary, W. & Col menares-Diaz, L. (2022). A knowledge-based artifi cial intelligence approach to risk management. SPE Annual Technical Conference and Exhibition, Hous ton, USA. doi: 10.2118/210303-ms
  • Cheng, M.-Y., Vu, Q.-T., & Teng, R.-K. (2024). Real-time risk assessment of multi-parameter induced fall acci dents at construction sites. Automation in Construc tion, 162, 105409. doi: 10.1016/j.autcon.2024.105409
  • Cherniak, O., Trishch, R., Ginevičius, R., Nechuiviter, O. & Burdeina, V. (2024). Methodology for assessing the processes of the occupational safety management system using functional dependencies. In Integrated Computer Technologies in Mechanical Engineering – 2023. Cham, Switzerland. doi: 10.1007/978-3-031 60549-9_1
  • Crawford, J., & Jabbour, M. (2023). The relationship be tween enterprise risk management and managerial judgement in decision‐making: A systematic litera ture review. International Journal of Management Re views, 26(1), 110-136. doi: 10.1111/ijmr.12337
  • Dyadyura, K., Slyuz, A., Vysotsky, I. Y., Bubela, T. & Cher niak, O. (2024). Decision support algorithm at the life cycle stages of medical devices based on the applica tion of Markov process. In Integrated Computer Tech nologies in Mechanical Engineering – 2023. Cham, Switzerland. doi: 10.1007/978-3-031-60549-9_7
  • Elmadhoun, B., Alsaidalani, R. & Burczynski, F. (2025). Quality risk management in the final operational stage of sterile pharmaceutical manufacturing: A case study highlighting the management of sus tainable related risks in product sterilization, inspec tion, labeling, packaging, and storage processes. Sus tainability, 17(4), 1670. doi: 10.3390/su17041670
  • Fedorovich, O., Lutai, L., Kompanets, V. & Bahaiev, I. (2024). The creation of an optimisation compo nent-oriented model for the formation of the ar chitecture of science-based products. In Integrated Computer Technologies in Mechanical Engineering – 2023. Cham, Switzerland. doi: 10.1007/978-3-031 60549-9_31
  • Fedorovich, O., Lutai, L., Trishch, R., Zabolotnyi, О., Kho miak, E. & Nikitin, A. (2024). Models for reducing the duration and cost of the aviation equipment diagnostics process using the decomposition of the component architecture of a complex product. In Information Technology for Education, Science, and Technics. ITEST 2024. Cham, Switzerland. doi: 10.1007/978-3-031-71801-4_9
  • Fleurbaey, M., & Zuber, S. (2022). A new puzzle in the social evaluation of risk. Economics and Philosophy, 38, 450-465. doi: 10.1017/S0266267121000225
  • Fraume, M., Omar-Darío Cardona, A., Fraume, P., Martha Liliana Carreño, T., & Barbat, A. (2020). Evaluating risk from a holistic perspective to improve resilience: T he United Nations evaluation at global level. Safety Science, 127, 104739. doi: 10.1016/j.ssci.2020.104739
  • Glette-Iversen, I., Flage, R., & Aven, T. (2023). Extending and improving current frameworks for risk man agement and decision-making: A new approach for incorporating dynamic aspects of risk and uncer tainty. Safety Science, 168, 106317. doi: 10.1016/j. ssci.2023.106317
  • Gul, M., Yucesan, M. & Karci, C. (2024). A stratified Bayes ian decision-making model for occupational risk assessment of production facilities. Engineering Ap plications of Artificial Intelligence, 133, 108283. doi: 10.1016/j.engappai.2024.108283
  • Guliyeva, A. (2021). Measuring quality of life: A system of indicators. Economic and Political Studies, 10476 491. doi: 10.1080/20954816.2021.1996939
  • Ha, D., Park, J., & Lee, S. (2022). Risk Assessment of Re ported Accident-causing Products Using Rapid Exchange of Information System Risk Assessment Guideline. Journal of Applied Reliability, 22(1), 59-71. doi: 10.33162/jar.2022.3.22.1.059
  • He, Z., Shen, K., Lan, M. & Weng, W. (2024). An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception. Reli ability Engineering & System Safety, 244, 109912. doi: 10.1016/j.ress.2023.109912
  • Hovorov, P., Trishch, R., Ginevičius, R., Petraškevičius, V. & Šuhajda, K. (2025). Assessment of risks of volt age quality decline in load nodes of power systems. Energies, 18, 1579. doi: 10.3390/en18071579
  • Hrinchenko, H., Trisch, R., Burdeina, V. & Chelysheva, S. (2019). Algorithm of technical diagnostics of the complicated damage to the continued resource of the circulation pipeline of the nuclear power plant. Problems of Atomic Science And Technology (PAST), 2(120), 104-110
  • Hu, S., Zhang, Y., Lin, Q., Wan, Z., & Liu, Y. (2023). Risk Assessment Method of Project Whole Pro cess Based on Fuzzy Comprehensive Evaluation. SHS Web of Conferences, 170, 02002. doi: 10.1051/ shsconf/202317002002
  • International Organization for Standardization. (2009). ISO Guide 73:2009 Risk management – Vocabulary - Guidelines for use in standards. Retrieved from https://www.iso.org/standard/44651.html
  • International Organization for Standardization. (2015). ISO 9001:2015 IDT Quality management systems - Requirement. Retrieved from https://www.iso.org/ standard/62085.html
  • International Organization for Standardization. (2018). ISO 31000:2018 IDT Risk management - Guidelines. Retrieved from https://www.iso.org/standard/65694. html
  • International Organization for Standardization. (2019). ISO 31010:2019 IDT Risk management - Risk assess ment techniques. Retrieved from https://www.iso. org/standard/72140.html
  • Irfan, D., Tang, X., Narayan, V., Mall, P. K., Srivastava, S. & Saravanan, V. (2022). Prediction of quality food sale in mart using the AI-based TOR meth od. Journal of Food Quality, 2022(1), 6877520. doi: 10.1155/2022/6877520
  • Ismail, M. N., Kallow, S. M., Gati, K. H., Al-Bayati, H. N. A., & Butsenko, Y. (2024). Quantitative Approaches in Decision Theory for Enhancing Risk Assessment Strategies. Journal of Ecohumanism, 3(5), 308-321. doi: 10.62754/joe.v3i5.3908
  • Khomiak, E., Trishch, R., Nazarko, J., Novotný, M. & Petraškevičius, V. (2025). Method of quality control of nuclear reactor element tightness to im prove environmental safety. Energies, 18(9), 2172. doi: 10.3390/en18092172
  • Khomiak, E., Trishch, R., Zabolotnyi, O., Cherniak, O., Lu tai, L. & Katrich, O. (2024). Automated mode of im provement of the quality control system for nuclear reactor fuel element shell tightness. In International Scientific-Practical Conference “Information Technol ogy for Education, Science and Technics”. Cham, Swit zerland. doi: 10.1007/978-3-031-71801-4_7
  • Kilström, M., & Roth, P. (2024). Risk-sharing and entrepre neurship. Journal of Comparative Economics, 52(1), 341-360. doi: 10.1016/j.jce.2023.12.002
  • Komari, I. E., Fedorenko, M., Kharchenko, V., Yehorova, Y., Bardis, N. & Lutai, L. (2020). The neural mod ules network with collective relearning for the rec ognition of diseases: Fault-tolerant structures and reliability assessment. International Journal of Cir cuits, Systems and Signal Processing, 14, 792-800. doi: 10.46300/9106.2020.14.102.o
  • Lee, H. (2021). The Concept of Risk and Corporate Risk. In: Risk Management. Risk Management: Fundamentals, T heory, and Practice in Asia (pp. 3-12). Singapore, Asia: Springer.
  • Li, Y. (2020) A Vulnerability Risk Assessment Method for Industrial Control System. In 2020 International Conference on Computer Communication and Network Security (CCNS). Xi’an, China. doi: 10.1109/ CCNS50731.2020.00040
  • Nateghi, R., & Aven, T. (2021). Risk Analysis in the Age of Big Data: The Promises and Pitfalls. Risk Analysis, 41(10), 1751-1758. doi: 10.1111/risa.13682
  • Ouyang, L., Zheng, W., Zhu, Y. & Zhou, X. (2020). An interval probability-based FMEA model for risk as sessment: A real-world case. Quality and Reliability Engineering International, 36, 125-143. doi: 10.1002/ qre.2563
  • Palakurti, N. (2025). The role of artificial intelligence in risk assessment and mitigation in the financial sector. In ternational Journal of Advanced Research in Science, Communication and Technology, 5(2), 633-641. doi: 10.48175/ijarsct-23392
  • Panda, A., Dyadyura, K., & Kokhan, O. (2024). Increase of technological indicators used in the energy indus try. MM Science Journal, 7724-7730. doi: 10.17973/ MMSJ.2024_11_2024025
  • Pirbalouti, R., Behnam, B., & Dehkordi, M. (2023). A risk based approach to identify safety-critical equipment in process industries. Results in Engineering, 20, 101448. doi: 10.1016/j.rineng.2023.101448
  • Raian, S., Siddiqua, T., Moktadir, M., & Rahman, T. (2023). An empirical model for identifying and controlling operational and environmental risks in spinning industry in an emerging economy. Computers & Industrial Engineering, 180, 109244. doi:10.1016/ j.cie.2023.109244
  • Riabchykov, M., Alexandrov, A., Trishch, R., Nikulina, A. & Korolyova, N. (2022). Prospects for the devel opment of smart clothing with the use of textile ma terials with magnetic properties. Tekstilec, 65(1), 1-8. doi: 10.14502/tekstilec.65.2021050
  • Riabchykov, M., Nazarchuk, L. & Tkachuk, O. (2022). Basic parameters of medical textile materials for removal and retention of exudate from wounds. Tekstilec, 65(4), 268-277. doi: 10.14502/tekstilec.65.2022064
  • Riabchykov, M., Tkachuk, O., Nazarchuk, L. & Alexandrov, A. (2023). Conditions for the open pores forma tion in medical textile materials for the treatment of wounds using iron oxide nanopowders. Materials Research Express, 10(1), 015401. doi:10.1088/2053 1591/acadcf
  • Riabchykov, M., Tsykhanovska, I. & Alexandrov, A. (2023). Justification of technologies for the synthesis of min eral nanoparticles for the creation of magnetic smart textile. Journal of Materials Science, 58(16), 7244 7256. doi: 10.1007/s10853-023-08463-x
  • Rudyk, Y., Mykyichuk, M., & Menshykova, O. (2024). Crite ria for the Use of Information Technology in Assess ing the Quality of Critical Infrastructure by Safety Indexes. In: International Scientific-Practical Confer ence” Information Technology for Education, Science and Technics”. Cham, Switzerland. doi: 10.1007/978 3-031-71801-4_13
  • Settembre-Blundo, D., González-Sánchez, R., Medina-Sal gado, S., & García-Muiña, F. (2021). Flexibility and Resilience in Corporate Decision Making: A New Sustainability-Based Risk Management System in Uncertain Times. Global Journal of Flexible Systems Management, 22, 107-132. doi: 10.1007/s40171-021 00277-7
  • Simpson, A. (2024). Into the unknown: the need to reframe risk analysis. Journal of Cybersecurity, 10(1). doi: 10.1093/cybsec/tyae022
  • Stødle, K., Flage, R., Guikema, S. & Aven, T. (2024). Arti f icial intelligence for risk analysis - A risk character ization perspective on advances, opportunities, and limitations. Risk Analysis, 45, 738-751. doi: 10.1111/ risa.14307
  • Sureshkumar, N., Narayanan, P., Ghapar, F., Chew, L., Pan diyan, V., Sundram, K., Naidu, B. M., Zulfakar, M. & Daud, A. (2024). Artificial intelligence-powered risk assessment in supply chain safety. Information Management and Business Review, 16(3), 107-114. doi: 10.22610/imbr.v16i3s(i)a.4124
  • Tang, K. H. D. (2024). Artificial intelligence in occupational health and safety risk management of construction, mining, and oil and gas sectors: Advances and pros pects. Journal of Engineering Research and Reports, 26(6). 241-253. doi: 10.9734/jerr/2024/v26i61177
  • Tetelepta, J. O. & De Carvalho Belo, G. B. (2025). Analysis of potential hazards of work accidents to workers us ing the Hazard Identification, Risk Assessment and Risk Control (HIRARC) method in freight forward ing companies. Jurnal Ilmiah Manajemen Sumber Daya Manusia, 8(3), 329-340. doi: 10.32493/jjsdm. v8i3.46222
  • Trishch, R., Cherniak, O., Zdenek, D. & Petraskevicius, V. (2024). Assessment of the occupational health and safety management system by qualimetric methods. Engineering Management in Production and Services, 16(2), 118-127. doi: 10.2478/emj-2024-0017
  • Trishch, R., Maletska, O., Hrinchenko, H., Artiukh, S., Burdeina, V. & Antonenko, N. (2019). Develop ment and validation of measurement techniques ac cording to ISO/IEC 17025:2017. In 2019 IEEE 8th In ternational Conference on Advanced Optoelectronics and Lasers (CAOL). Sozopol, Bulgaria. doi: 10.1109/ CAOL46282.2019.9019539
  • Tzanakakis, K. (2021). Risk Assessment Techniques. In Managing Risks in the Railway System: A Practice Oriented Guide (pp. 113-146). Cham, Switzerland: Springer
  • Urbano, E., Martínez-Viol, V., Kampouropoulos, K., & Romeral, L. (2023). Quantitative and qualita tive risk-informed energy investment for indus trial companies. Energy Reports, 9, 3290-3304. doi: 10.1016/j.egyr.2023.01.131.
  • Vasilevskyi, O. (2021). Assessing the level of confidence for expressing extended uncertainty through control er rors on the example of a model of a means of mea suring ion activity. Acta IMEKO, 10(2), 199-203. doi: 10.21014/acta_imeko.v10i2.810
  • Vasilevskyi, O., Cullinan, M. & Allison, J. (2024). Theoreti cal approach for determining an emissivity of solid materials and its comparison with experimental studies on the example of 316l powder steel. Informa tyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 14(3), 5-8. doi: 10.35784/iapgos.6289
  • Vasilevskyi, O., Koval, M. & Kravets, S. (2021). Indicators of reproducibility and suitability for assessing the qual ity of production services. Acta IMEKO, 10(4), 54-61. doi: 10.21014/acta_imeko.v10i4.814
  • Vasilevskyi, O., Sevastianov, V., Ovchynnykov, K., Didych, V. & Burlaka, S. (2023). Accuracy of potentiomet ric methods for measuring ion activity in solutions. In Proceedings of Seventh International Congress on Information and Communication Technology: ICICT 2022. London, Unitek Kingdom. doi: 10.1007/978 981-19-1607-6_16
  • Vasilevskyi, O., Voznyak, O., Didych, V., Sevastianov, V., Ruchka, O. & Rykun, V. (2022). Methods for con structing high-precision potentiometric measuring instruments of ion activity. In 2022 IEEE 41st Inter national Conference on Electronics and Nanotechnol ogy (ELNANO). Kyiv, Ukraine. doi: 10.1109/ELNA NO54667.2022.9927128
  • Wang, Q., Zhang, X., Wang, F., Dou, Z., Jiang, Y. & Yang, G. (2022). Human factors risk assessment for high danger production processes based on SPA. In 12th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2022). Emeishan, China. doi: 10.1049/icp.2022.2901
  • Wickramaratne, K. A. C. (2023). Risk based quality man agement: the way forward to improve quality in med ical laboratories. The Sri Lanka Journal of Haematol ogy, 15(1), 12-18. doi: 10.4038/tsljh.v15i1.10
  • Yazdi, M., Zarei, E., Adumene, S. & Beheshti, A. (2024). Navigating the power of artificial intelligence in risk management: A comparative analysis. Safety, 10(2), 42. doi: 10.3390/safety10020042
  • Zhao, X. (2024). Research on high-rise building risk iden tification and safety risk factor analysis. Theoretical and Natural Science, 31, 313-319. doi: 10.54254/2753 8818/31/20240997
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e911d178-95fd-46c3-a69c-7c055f1dc42b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.