PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the effect of muscle forces implementation on the behavior of a dummy during a head-on collision

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this study was to develop a method to implement muscle forces to a numerical model of a dummy and to evaluate the effect of muscle activation on driver behavior during a frontal collision. The authors focused on the forces acting at the knee, hip, and elbow joints. Methods: The authors carried out torque measurements in joints using the Biodex System 4. Then, the previously developed numerical models were modified by introducing the joint torque values. Moments of force were introduced as a function of the rotation angle. During research, numerical simulations were carried out in three stages: in the first stage, a full vehicle crash was analyzed to determine the change of velocity of the vehicle interior; in the second stage, subsidence of the system was realized; in the third stage, a frontal crash was simulated. The models considered the operation of the sensors, airbag and seat belt tensioning system. Results: A numerical model with the active response of the dummy to the change in position during impact was developed. The results of the dynamic analysis were used to analyze the impact of muscle activation on dummy behavior. The change in shoulders rotation angle, the lateral and vertical displacement of the dummy’s center of gravity, and the forces acting between the dummy and the seat belt were compared. Conclusions: The effect of muscle action on the behavior of a dummy during a frontal collision was determined.
Rocznik
Strony
137--147
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
  • Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Department of Biomechatronics, Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland
  • Institute of Mechanics and Computational Engineering, Faculty of Mechanical Engineering, Military University of Technology, Warsaw, Poland
Bibliografia
  • [1] ANTONA-MAKOSHI J., YAMAMOTO Y., KATO R., KUNITOMI S., KONOSU A., DOKKO Y., YASUKI T., TAKAMIYA T., Effect of seatbelt and airbag loads on thoracic injury risk in frontal crashes considering average and small body sizes and age--dependent thoracic fragility, IRCOBI Conference Proceedings, 2016, 162–184.
  • [2] BARANOWSKI P., DAMAZIAK K., MAZURKIEWICZ L., MUSZYŃSKI A., VANGI D., Analysis of mechanics of side impact test defined in UN / ECE Regulation 129, Traffic Injury Prevention, 2018, 19 (3), 256–263, DOI: 10.1080/ 15389588.2017.1378813.
  • [3] BOSE D., CRANDALL J.R., UNTAROIU C.D., MASLEN E.H., Influence of pre-collision occupant parameters on injury outcome in a frontal collision, Accident Analysis & Prevention, 2010, 42 (4), 1398–1407, DOI: 10.1016/j.aap.2010.03.004.
  • [4] BOYLE K.J., REED M.P., ZASECK L.W., HU J., A human modelling study on occupant kinematics in highly reclined seats during frontal crashes, Conference Proceedings International Research Council on the Biomechanics of Injury, IRCOBI, 2019, 282–292.
  • [5] BURKACKI M., WOLAŃSKI W., SUCHOŃ S., JOSZKO K., GZIK--ZROSKA B., SYBILSKI K., GZIK M., Finite element head model for the crew injury assessment in a light armoured vehicle, Acta of Bioengineering and Biomechanics, 2020, 22 (2), 174–183, DOI: 10.37190/ABB-01556-2020-02.
  • [6] CORREIA M.A., MCLACHLIN S.D., CRONIN D.S., Optimization of muscle activation schemes in a finite element neck model simulating volunteer frontal impact scenarios, Journal of Biomechanics, 2020, 104, 109754, DOI: 10.1016/ j.jbiomech.2020.109754.
  • [7] Global Human Body Models Consortium (GHBMC), 2021, http://www.ghbmc.com/
  • [8] GUIBING LI, HENGSHUAI MENG, JINMING LIU, DONGHUA ZOU, KUI LI, A novel modeling approach for finite element human body models with high computational efficiency and stability: application in pedestrian safety analysis, Acta Bioeng. Biomech., 2021, 23 (2), DOI: 10.37190/abb-01792-2021-03.
  • [9] GZIK M., WOLAŃSKI W., GZIK-ZROSKA B., JOSZKO K., BURKACKI M., SUCHOŃ S., Analysis of various factors impact on safety of armored vehicle crew during an IED explosion, Advances in Intelligent Systems and Computing, 647, 2018, 294–303, DOI: 10.1007/978-3-319-66905-2_26.
  • [10] HALLQUIST J., LS-Dyna: Theory manual, California, USA: Livemore Software Technology Corporation (LSTC), 2019.
  • [11] HAULT-DUBRULLE A., ROBACHE F., DRAZETIC P., GUILLEMOT H., MORVAN H., Determination of pre-impact occupant postures and analysis of consequences on injury outcome – Part II: Biomechanical study, Accident Analysis and Prevention, 2011, 43 (1), 75–81, DOI: 10.1016/j.aap.2010.07.013.
  • [12] HAULT-DUBRULLE A., ROBACHE F., PACAUX M.P., MORVAN H., Determination of pre-impact occupant postures and analysis of consequences on injury outcome. Part I: A driving simulator study, Accident Analysis and Prevention, 2011, 43 (1), 66–74, DOI: 10.1016/j.aap.2010.07.012.
  • [13] Hybrid III 50th Dummy Dyna Model – technical report. Release Version 8.0.1, Humanetics Innovative Solutions, Inc.: Michigan, USA, 2013.
  • [14] IRAEUS J., BROLIN K., PIPKORN B., Generic finite element models of human ribs, developed and validated for stiffness and strain prediction – To be used in rib fracture risk evaluation for the human population in vehicle crashes, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103742, DOI: 10.1016/j.jmbbm.2020.103742.
  • [15] KLASZTORNY M., NYCZ D., ZAJĄC K., Modelling and simulation of crash tests on curved barriers taking into account vehicle speed limits, The Baltic Journal of Road And Bridge Engineering, 2019, 14 (3), 304–325, DOI: 10.7250/bjrbe.201914.445.
  • [16] KLEKIEL T., ARKUSZ K., SŁAWIŃSKI G., BĘDZIŃSKI R., Prediction of the Segmental Pelvic Ring Fractures Under Impact Loadings, During Car Crash, 2019, 138–149. DOI: 10.1007/ 978-3-319-97286-2_13.
  • [17] LS-Dyna keyword user’s manual, R11 ed. California, USA: Livemore Software Technology Corporation (LSTC), 2018.
  • [18] MALCZYK A., MÜLLER I., EßERS S., HÄNSEL M., Effects of seating position of short stature drivers in frontal impacts, 2013 IRCOBI Conference Proceedings – International Research Council on the Biomechanics of Injury, 2013, 49, 842–853.
  • [19] MATSUDA T., YAMADA K., HAYASHI S., KITAGAWA Y., Simulation of occupant posture changes due to evasive manoeuvres and injury predictions in vehicle frontal and side collisions, IRCOBI Conference Proceedings, 2018, 752–753.
  • [20] MAZURKIEWICZ L., BARANOWSKI P., KARIMI H.R., DAMAZIAK K., MALACHOWSKI J., MUSZYNSKI A., MUSZYNSKI A., ROBBERSMYR K.G., VANGI D., Improved child-resistant system for better side impact protection, International Journal of Advanced Manufacturing Technology, 2018, DOI: 10.1007/ s00170-018-2236-y.
  • [21] NASERI H., IRAEUS J., JOHANSSON H., The effect of adipose tissue material properties on the lap belt-pelvis interaction: A global sensitivity analysis, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103739, DOI: 10.1016/j.jmbbm.2020.103739.
  • [22] NIE B., SATHYANARAYAN D., YE X., CRANDALL J.R., PANZER M.B., Active muscle response contributes to increased injury risk of lower extremity in occupant–knee airbag interaction, Traffic Injury Prevention, 2018, 19, 76–82, DOI: 10.1080/15389588.2017.1349898.
  • [23] OMEROVIĆ S., TOMASCH E., GUTSCHE A.J., PREBIL I., Comparative study of potential whiplash injuries for different occupant seated positions during rear end accidents, Acta Bioeng. Biomech., 2016, 18 (4), 145–158, DOI: 10.5277/ ABB-00563-2016-03.
  • [24] PAWLUS W., KARIMI H.R., ROBBERSMYR K.G., Investigation of vehicle crash modeling techniques: theory and application, The International Journal of Advanced Manufacturing Technology, 2014, 70 (5–8), 965–993, DOI: 10.1007/s00170-013-5320-3.
  • [25] PEREZ-RAPELA D., FORMAN J.L., HUDDLESTON S.H., CRANDALL J.R., Methodology for vehicle safety development and assessment accounting for occupant response variability to human and non-human factors, Computer Methods in Biomechanics and Biomedical Engineering, 2020, 24 (4), 384–399, DOI: 10.1080/10255842.2020.1830380.
  • [26] PTAK M., Method to assess and enhance vulnerable road user safety during impact loading, Applied Sciences (Switzerland), 2019, 9 (5), DOI: 10.3390/app9051000.
  • [27] SŁAWIŃSKI G., MALESA P., ŚWIERCZEWSKI M., Numerical Assessment Regarding the Influence of the Stiffness of the Material Used to Build Multi-layer Energy-Absorbing Panels on the Absorption of the Shock Wave Energy, 2020, 61–79. DOI: 10.1007/978-3-030-27053-7_7.
  • [28] SYBILSKI K., MAŁACHOWSKI J., Impact of disabled driver’s mass center location on biomechanical parameters during crash, Applied Sciences (Switzerland), 2021, 11 (4), 1–17, DOI: 10.3390/app11041427.
  • [29] SYBILSKI K., MAŁACHOWSKI J., Sensitivity study on seat belt system key factors in terms of disabled driver behavior during frontal crash, Acta Bioeng. Biomech., 2019, 21 (4), 169–180, DOI: 10.5277/ABB-01421-2019-02.
  • [30] TANG L., ZHENG J., HU J., A numerical investigation of factors affecting lumbar spine injuries in frontal crashes, Accident Analysis and Prevention, 2020, 136 (October 2019), 105400, DOI: 10.1016/j.aap.2019.105400.
  • [31] Toyota Thums, 2021. https://www.toyota.co.jp/thums/
  • [32] TYLKO S., TANG K., GIGUERE F., BUSSIERES A., Effects of Shoulder-belt Slip on the Kinetics and Kinematics of the THOR, IRCOBI Conference Proceedings, 2018, 733–734.
  • [33] WILDE K., BRUSKI D., BUDZYŃSKI M., BURZYŃSKI S., CHRÓŚCIELEWSKI J., JAMROZ K., PACHOCKI Ł., WITKOWSKI W., Numerical analysis of tb32 crash tests for 4-cable guardrail barrier system installed on the horizontal convex curves of road, International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21 (1), 65–81, DOI: 10.1515/ ijnsns-2018-0169.
  • [34] WILHELM J., PTAK M., FERNANDES F.A.O., KUBICKI K., KWIATKOWSKI A., RATAJCZAK M., SAWICKI M., SZAREK D., Injury biomechanics of a child’s head: Problems, challenges and possibilities with a new aHEAD finite element model, Applied Sciences (Switzerland), 2020, 10 (13), 4467, DOI: 10.3390/app10134467.
  • [35] XIAO S., YANG J., CRANDALL J.R., Investigation of chest injury mechanism caused by different seatbelt loads in frontal impact, Acta of Bioengineering and Biomechanics, 2017, 19 (3), 53–62, DOI: 10.5277//ABB-00777-2016-02.
  • [36] ZHANG K., CAO L., FANTA A., REED M.P., NEAL M., WANG J.T., LIN C.H., HU J., An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women, Journal of Biomechanics, 2017, 60, 253–260, DOI: 10.1016/ j.jbiomech.2017.06.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e9003b85-9789-49f9-add4-7bdc3d572e10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.