PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequencydependent anisotropy analysis, it was found that the time delays in shearwaves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research.
Czasopismo
Rocznik
Strony
76--100
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Department of Chemical and Petroleum Engineering, Curtin University, Sarawak, Malaysia
  • Department of Chemical and Petroleum Engineering, Curtin University, Sarawak, Malaysia
  • Department of Mining, Petroleum and Geophysics, Shahrood University of Technology, Shahrood, Iran
autor
  • Department of Petroleum Engineering, University of North Dakota, Grand Forks, USA
autor
  • Petroleum Geology, Tehran, Iran
Bibliografia
  • Alford, R.M. (1986), Shear data in the presence of azimuthal anisotropy: Dilley, Texas. In: 56th SEG Annual Meeting, 2-6 November 1986, Houston, USA, Society of Exploration Geophysicists, Expanded abstracts, SEG-1986-0476, 476-479.
  • Bayuk, I.O., and E.M. Chesnokov (1998), Correlation between elastic and transport properties of porous cracked anisotropic media, Phys. Chem. Earth 23, 3, 361-366, DOI: 10.1016/S0079-1946(98)00038-X.
  • Chapman, M., S. Maultzsch, E. Liu, and X.Y. Li (2003), The effect of fluid saturation in an anisotropic multi-scale equant porosity model, J. Appl. Geophys. 54, 3-4, 191-202, DOI: 10.1016/j.jappgeo.2003.01.003.
  • Chesnokov, E.M., Y.A. Kukharenko, and P.Y. Kukharenko (1998), Frequencydependence of physical parameters of microinhomogeneous media: space statistics, Rev. Inst. Fr. Petrol. 53, 5, 729-734, DOI: 10.2516/ogst:1998065.
  • Chesnokov, E.M., J.H. Queen, A.A. Vichorev, H.B. Lynn, J.M. Hooper, I.O. Bayuk, J.A. Castagna, and B. Roy (2001), Frequency dependent anisotropy. In: 71st SEG Annual Meeting, 9-14 September 2001, San Antonio, USA, Society of Exploration Geophysicists, Expanded abstracts, 2120-2123, DOI: 10.1190/1.1816569.
  • Crampin, S. (1985), Evaluation of anisotropy by shear-wave splitting, Geophysics 50, 1, 142-152, DOI: 10.1190/1.1441824.
  • Crampin, S. (1987), Geological and industrial implications of extensive-dilatancy anisotropy, Nature 328, 6130, 491-496, DOI: 10.1038/328491a0.
  • Crampin, S., and J.H. Lovell (1991), A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? And what should we do next? Geophys. J. Int. 107, 3, 387-407, DOI: 10.1111/j.1365-246X. 1991.tb01401.x.
  • Crampin, S., and S. Peacock (2005), A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion 41 1, 59-77, DOI: 10.1016/j.wavemoti.2004.05.006.
  • Gulati, J.S., R.R. Stewart, and J.M. Parkin (2004), Analyzing three-component 3D vertical seismic profiling data, Geophysics 69, 2, 386-392, DOI: 10.1190/ 1.1707057.
  • Hudson, J.A. (1981), Wave speeds and attenuation of elastic waves in material containing cracks, Geophys. J. Int. 64, 1, 133-150, DOI: 10.1111/j.1365-246X. 1981.tb02662.x.
  • Hudson, J.A., E. Liu, and S. Crampin (1996), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int. 124, 1, 105-112, DOI: 10.1111/j.1365-246X.1996.tb06355.x.
  • Hudson, J.A., T. Pointer, and E. Liu (2001), Effective-medium theories for fluidsaturated materials with aligned cracks, Geophys. Prospect. 49, 5, 509-522, DOI: 10.1046/j.1365-2478.2001.00272.x.
  • Li, X.Y., and S. Crampin (1993), Linear-transform techniques for processing shearwaves anisotropy in four-component seismic data, Geophysics 58, 2, 240- 256, DOI: 10.1190/1.1443409.
  • Li, X.Y., Y.J. Liu, E. Liu, F. Shen, L. Qi, and Q. Shouli (2003), Fracture detection using land 3D seismic data from the Yellow River Delta, China, The Leading Edge 22, 7, 680-683, DOI: 10.1190/1.1599696.
  • Liu, E., J.A. Hudson, and T. Pointer (2000), Equivalent medium representation of fractured rock, J. Geophys. Res. 105, B2, 2981-3000, DOI: 10.1029/ 1999JB900306.
  • Liu, E., J.H. Queen, X.Y. Li, M. Chapman, S. Maultzsch, H.B. Lynn, and E.M. Chesnokov (2003), Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont Field, Utah, J. Appl. Geophys. 54, 3-4, 319-333, DOI: 10.1016/j.jappgeo.2003.01.004.
  • Liu, J., X. Zeng, J. Xia, and M. Mao (2012), The separation of P- and S-wave components from three-component crosswell seismic data, J. Appl. Geophys. 82, 163-170, DOI: 10.1016/j.jappgeo.2012.03.007.
  • Long, M.D. (2010), Frequency-dependent shear wave splitting and heterogeneous anisotropic structure beneath the Gulf of California region, Phys. Earth Planet. In. 182, 1-2, 59-72, DOI: 10.1016/j.pepi.2010.06.005.
  • Long, M.D., M.V. de Hoop, and R.D. van der Hilst (2008), Wave-equation shear wave splitting tomography, Geophys. J. Int. 172, 1, 311-330, DOI: 10.1111/ j.1365-246X.2007.03632.x.
  • Lynn, H.B., K.M. Simon, C.R. Bates, M. Layman, R. Schneider, and M. Jones (1995), Use of anisotropy in P-wave and S-wave data for fracture characterization in a naturally fractured gas reservoir, The Leading Edge 14, 8, 887-893, DOI: 10.1190/1.1437179.
  • Lynn, H.B., K.M. Simon, and C.R. Bates (1996), Correlation between P-wave AVOA and S-wave traveltime anisotropy in a naturally fractured gas reservoir, The Leading Edge 15, 8, 931-935, DOI: 10.1190/1.1437394.
  • Lynn, H.B., W.E. Beckham, K.M. Simon, C.R. Bates, M. Layman, and M. Jones (1999), P-wave and S-wave azimuthal anisotropy at a naturally fractured gas reservoir, Bluebell-Altamont Field, Utah, Geophysics 64, 4, 1312-1328, DOI: 10.1190/1.1444636.
  • MacLeod, M.K., R.A. Hanson, M.J. Hadley, K.J. Reynolds, D. Lumley, S. McHugo, and A. Probert (1999), The Alba Field OBC seismic survey. In: 6th Int. Congress of Brazilian Geophysical Society, Extended abstracts, 6-25.
  • Magnitsky, V.A., and E.M. Chesnokov (1986), Geophysics of anisotropic media: state of art, Izv. – Phys. Solid Earth 22, 11, 867-872.
  • Marson-Pidgeon, K., and M.K. Savage (1997), Frequency-dependent anisotropy in Wellington, New Zealand, Geophys. Res. Lett. 24, 24, 3297-3300, DOI: 10.1029/97GL03274.
  • NISOC (2005), NISOC R&D Solutions Project #1, casing collapse (well integrity); Phase 1 – concept and feasibility study, National Iranian South Oil Company, Ahwaz, Iran.
  • Nuzzo, L., and T. Quarta (2004), Improvement in GPR coherent noise attenuation using τ–p and wavelet transforms, Geophysics 69, 3, 789-802, DOI: 10.1190/1.1759465.
  • Parra, J.O. (2000), Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy, Geophysics 65, 1, 202-210, DOI: 10.1190/1.1444711.
  • Peacock, S., S. Crampin, D.C. Booth, and J.B. Fletcher (1988), Shear wave splitting in the Anza seismic gap, southern California: temporal variations as possible precursors, J. Geophys. Res. 93, B4, 3339-3356, DOI: 10.1029/ JB093iB04p03339.
  • Pointer, T., E. Liu, and J.A. Hudson (2000), Seismic wave propagation in cracked porous media, Geophys. J. Int. 142, 1, 199-231, DOI: 10.1046/j.1365-246x. 2000.00157.x.
  • Qian, Z., X. Li, and M. Chapman (2008), Fracture characterization with azimuthal attribute analysis of P-S wave data: Modelling and application. In: 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008, Extended abstracts, DOI: 10.3997/2214-4609.20148062.
  • Sato, H., and M.C. Fehler (1997), Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer, Berlin, DOI: 10.1007/978-3-540-89623-4.
  • Theune, U., M.D. Sacchi, and D.R. Schmitt (2006), Least-squares local Radon transforms for dip-dependent GPR image decomposition, J. Appl. Geophys. 59, 3, 224-235, DOI: 10.1016/j.jappgeo.2005.10.003.
  • Thomsen, L. (1995), Elastic anisotropy due to aligned cracks in porous rock, Geophys. Prospect. 43, 6, 805-829, DOI: 10.1111/j.1365-2478.1995.tb00282.x.
  • Thomsen, L.A., O.I. Barkved, B. Haggard., J.H. Kommedal, and B. Rosland (1997), Converted-wave imaging of Valhall reservoir. In: 59th EAGE Conference and Exhibition, Extended abstracts, B048.
  • Tod, S.R., and E. Liu (2002), Frequency-dependent anisotropy due to fluid flow in bed limited cracks, Geophys. Res. Lett. 29, 15, 1749, DOI: 10.1029/ 2002GL015369.
  • Tsvankin, I. (1997), Reflection moveout and parameter estimation for horizontal transverse isotropy, Geophysics 62, 2, 614-629, DOI: 10.1190/1.1444170.
  • Vetri, L., E. Loinger, J. Gaiser, A. Grandi, and H. Lynn (2003), 3D/4C Emilio: Azimuth processing and anisotropy analysis in a fractured carbonate reservoir, The Leading Edge 22, 7, 675-679, DOI: 10.1190/1.1599695.
  • Werner, U., and S.A. Shapiro (1999), Frequency-dependent shear-wave splitting in thinly layered media with intrinsic anisotropy, Geophysics 64, 2, 604-608, DOI: 10.1190/1.1444567.
  • Zhu, X., P. Valasek, B. Roy, S. Shaw, J. Howell, S. Whitney, N.D. Whitmore, and P. Anno (2008), Recent applications of turning-ray tomography, Geophysics 73, 5, VE243-VE254, DOI: 10.1190/1.2957894.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b83e41-167d-49b4-84d8-f26837c46efe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.