PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Speciation Analysis of Arsenic in Copper Electrolyte Baths Using Liquid-liquid Extraction and ICP-OES Method Detection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study describes a method for the determination of As (III) and As (V) in copper electrolytes. The method is based on the separation of As (III) from a copper electrolyte by triple liquid-liquid extraction using a non-polar organic solvent in a medium of 10-12 mol L-1 HCl. The extract contains As (III) and the raffinate-As (V), respectively. As(III) specie can be re-extracted from the organic solvent through the water. Analyzes of the concentration of As in the re-extract and raffinate were performed by ICP-OES spectroscopic method. The average recovery of arsenic by the proposed method is about 99%. Repeatability was estimated with RSD (n = 6). Selectivity and accuracy were proven by the standard addition method. The relative error for restoring the standard addition of As (III) is about 0.3%. The speciation method analysis could be applied for determination of the arsenic species in the analytical quality control of refined copper in copper tanks in the production of copper cathodes.
Twórcy
  • University of Chemical Technology and Metallurgy, Department of Analytic Chemistry, 8, St. Kliment Ohridski Blvd, 1756, Sofia, Sofia, Bulgaria
  • University of Chemical Technology and Metallurgy, Department of Analytic Chemistry, 8, St. Kliment Ohridski Blvd, 1756, Sofia, Sofia, Bulgaria
Bibliografia
  • [1] C. Wei, Q. Deng, F. Wu, Z. Fu, L. Xu, Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China, China. Biol. Trace Elem. Res. 144 (1-3), 1150-1158 (2011). DOI: https://doi.org/10.1007/s12011-011-9017-x
  • [2] S. Awe, Å. Sandström, Selective leaching of arsenic and antimony from a tetrahedrite rich complex sulphide concentrate using alkaline sulphide solution, Minerals Engineering 23 (15), 1227-1236 (2010). DOI: https://doi.org/10.1016/j.mineng.2010.08.018
  • [3] Q. Wang, X. Guo, Q. Tian, T. Jiang, M. Chen, B. Zhao, Effects of Matte Grade on the Distribution of Minor Elements (Pb, Zn, As, Sb, and Bi) in the Bottom Blown Copper Smelting Process, Metals 7 (11), 502 (2017). DOI: https://doi.org/10.3390/met7110502
  • [4] O. Forsén, J. Aromaa, M. Lundström, Primary Copper Smelter and Re-finery as a Recycling Plant - A System Integrated Approach to Estimate Secondary Raw Material Tolerance, Recycling. 2 (4), 19 (2017). DOI: https://doi.org/10.3390/recycling2040019
  • [5] BS EN 1978:1998 Copper Cathodes (Cathode grade designation Cu-CATH-1), British Standards Institution, London.
  • [6] M. Schlesinger, M. King, K. Sole, W. Davenport, Extractive metallurgy of copper, 2011 5th ed. Elsevier Ltd., Oxford. DOI: https://doi.org/10.1016/C2010-0-64841-3
  • [7] M. Michael, W. Shijie, K. Daniel, A Review of the Behavior and Deportment of Lead, Bismuth, Antimony and Arsenic in Copper Electrorefining, The Minerals, Metals, & Materials Society, 2012 Wiley Online Library. DOI: https://doi.org/10.1002/9781118364833.ch1
  • [8] C. Oosterhof, M. Bayanmunkh, B. Friedrich, Effect of As, Sb, Bi and oxygen in copper anodes during electrorefining, Conference: Copper 2010. DOI: https://doi.org/10.13140RG.2.1.2887.0642
  • [9] J. Hiskey, Mechanism and thermodynamics of floating slimes formation, T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization, The Minerals, Metals, & Materials Society 101-112 (2012). DOI: https://doi.org/10.1002/9781118364833.ch8
  • [10] X. Wang, Q. Chen, Zh. Yin, M. Wang, B. Xiao, F. Zhang, Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining, Hydrometallurgy 105, 355-358 (2011). DOI: https://doi.org/10.1016/j.hydromet.2010.10.004
  • [11] F. Xiao, J. Mao, D. Cao, X. Shen, The role of Trivalent Arsenic in Removal of Antimony and Bismuth Impurities from Copper Electrolytes, Hydrometallurgy 125-126, 76-80 (2012). DOI: https://doi.org/10.1016/j.hydromet.2012.05.011
  • [12] J.E. Hoffmann, The purification of copper refinery electrolyte, JOM: the Journal of the Minerals, Metals & Materials Society 56, 30-33 (2004). DOI: https://doi.org/10.1007/s11837-004-0088-4
  • [13] L. Rajaković, Analytical methods for arsenic speciation analysis, J. Serb. Chem. Soc. 78 (10), 1461-1479 (2013). DOI: https://doi.org/10.2298/JSC130315064R
  • [14] X. Yu, C. Liu, Y. Guo, T. Deng, Speciation analysis of trace Arsenic, Mercury, Selenium and antimony in Environmental and Biological Samples Based on Hyphenated Techniques, Molecules 24 (5), 926 (2019). DOI: https://doi.org/10.3390/molecules24050926
  • [15] D. Hung, O. Nekrassova, R. Compton, analytical methods for inorganic arsenic in water: A review, Talanta 64, 269-77 (2004). DOI: https://doi.org/10.1016/j.talanta.2004.01.027
  • [16] R. Mccleskey, D. Nordstrom, J.W. Ball, Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry, Geol. Surv. Water-Resour. Invest. Rep. (2003). DOI: https://doi.org/10.3133/wri034117
  • [17] J. Cazes, Chapter 3 Inductively Coupled Plasma Optical Emission Spectrometry - Analytical Instrumentation Handbook, 2004 3th ed., Marcel Dekker, New York.
  • [18] A. Yasui, Ch. Tsutsumi, Sh. Toda, Selective Determination of Inorganic Arsenic (III), (V) and Organic Arsenic In Biological Materials by Solvent Extraction-Atomic Absorption Spectrophotometry, Agricultural and Biological Chemistry 42 (11), 2139-2145 (1978). DOI: https://doi.org/10.1080/00021369.1978.10863320
  • [19] J. Chappell, B. Chiswell, H. Olszowy, Speciation of arsenic in a contaminated soil by solvent extraction, Talanta 42 (3), 323-329 (1995). DOI: https://doi.org/10.1016/0039-9140(95)01395-R
  • [20] S. Kalyanaraman, S. Khopkar, Liquid-liquid extraction of arsenic(III) with diluted tributyl phosphate, Talanta 24 (1), 63-65 (1977). DOI: https://doi.org/10.1016/0039-9140(77)80191-4
  • [21] N. Matsuo, T. Oshima, K. Ohe, N. Otsuki, Extraction Behavior of Arsenic, Selenium, and Antimony using cyclopentyl methyl ether from acidic chloride media, Solvent Extraction Research and Development 26, 81-89 (2019). DOI: https://doi.org/10.15261/serdj.26.81
  • [22] St. Alexandrov, Methods for Dissolution, Separation and Preconcentration in Analytical Chemistry, 2013 2nd ed., University of Sofia.
  • [23] D. Ilieva, A. Surleva, M. Murariu, G. Drochioiu, M. Abdullah, Evaluation of ICP-OES Method for Heavy Metal and Metalloids Determination in Sterile Dump Material, Solid State Phenomena 273, 159-166 (2018). DOI: https://doi.org/10.4028/www.scientific.net/SSP.273.159
Uwagi
1. Financial support from NIS-UCTM (12150, 2021), Sofia, Bulgaria is gratefully acknowledged.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e70f44aa-dcaa-48ef-8353-c0c0fa0a5adf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.