PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

ROP mathematical model of rotary-ultrasonic core drilling of brittle material

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results from the Phoenix mission led scientists to believe it is possible that primitive life exists below the Martian surface. Therefore, drilling in Martian soil in search for organisms is the next logical step. Drilling on Mars is a major engineering challenge due to the drilling depth requirement and extreme environment condition. Mars lacks a thick atmosphere and a continuous magnetic field that shield the planet’s surface from solar radiation and solar flares. As a result, the Martian surface is sterile and if life ever existed, it must be found below the surface. In 2001, NASA’s Mars Exploration Payload Advisory Group proposed that drilling should be considered as a priority investigation on Mars in an effort of finding evidence of extinct or extant life. The results from the Curiosity mission suggested drilling six meters deep in the red planet in search for life. Excavation tools deployed to Mars so far have been able to drill to a maximum depth of 6.5 cm. Thus, the drilling capabilities need to be increased by a factor of approximately 100 to achieve the goal of drilling six meters deep. This requirement puts a demand on developing new and more effective technologies to reach this goal. Previous research shows evidence of a promising drilling mechanism in rotary-ultrasonic for what it offers in terms of high surface quality, faster rate of penetration and higher material removal rate. This research addresses the need to understand the mechanics of the drill bit tip and rock interface in rotary-ultrasonic drilling performance of one drill bit at a time drilling in three types of rocks that vary in strength. A mathematical model identifying all contributing independent parameters, such as drill bit design parameters, drilling process parameters, ultrasonic wave amplitude and rocks’ material properties, that have effect on rate of penetration is developed. Analytical and experimental results under ambient condition are presented to show the effect of the variation of different parameters on rate of penetration performance as a first step of the investigation. It was found that the speed and WOB have significant effect on ROP while the rest of the parameter have very little or no effect.
Słowa kluczowe
Twórcy
autor
  • Department of Mechanical Engineering, University of California Berkeley, 6141 Etcheverry Hall, MC 1740, Berkeley, CA 94720, USA
Bibliografia
  • 1. Arif M., Rahman M., San W. and Doshi N. 2011. An experimental approach to study the capability of end-milling for microcutting of glass. Int J Adv Manuf Technol 53(9), 1063–1073.
  • 2. Badescu M., Sherrit S., Olorunsola A., Aldrich J., Bao X., Bar-Cohen Y., Chang Z., Doran P.T., Fritsen C.H., Kenig F., McKay C.P., Murray A., Du S., Peterson T. and Song T. 2006. Ultrasonic/sonic go¬pher for subsurface ice and brine sampling: analysis and fabrication challenges, and testing results. Proceedings of the SPIE Smart Structures and Materials Symposium, San Diego, CA, 27 February–2 March 2006, Paper 6171-07.
  • 3. Badescu M., Sherrit S., Bar-Cohen Y., Bao X. and Kassab S. 2007. Ultrasonic/sonic rotary–hammer drill (USRoHD). NTR Docket No. 44765, 19 December 2006. Patent application submitted 17 August 2007.
  • 4. Bar-Cohen Y. and Zacny K. (2008). Drilling in Extreme environments, WILEY-VCH Verlar GmbH & Co. KGaA.
  • 5. Cong W.L., Pei Z.J., Mohanty N., Van Vleet E. and Treadwell C. 2011. Vibration amplitude in rotary ultrasonic machining: A novel measurement method and effects of process variables. Journal of Manufacturing Science and Engineering, 133(June 2011), 034501. doi:10.1115/1.4004133.
  • 6. Cong W., Pei Z., Deines T., Liu D. and Treadwell C. 2013. Rotary ultrasonic machining of CFRP/Ti stacks using variable feedrate. Composites Part B: Engineering, 52, 303-310. doi:10.1016/j.compos-itesb.2013.04.022.
  • 7. Cong W., Pei Z., Sun X. and Zhang C. 2014. Rotary ultrasonic machining of CFRP: A mechanistic predictive model for cutting force. Ultrasonics, 54(2), 663-675. doi:10.1016/j.ultras.2013.09.005.
  • 8. Griffith A.A. 1920. Phil. Trans. Roy. Soc. Lond. A221, 163.
  • 9. Lawn B., Evans A.G. and Marshall D.B. 1980. Elastic/plastic indentation damage in ceramics: the median/radial crack system, Journal of the American Ceramic Society 63 (9–10), 574–581.
  • 10. Lawn B. and Wilshaw R. 1975. Indentation fracture: principles and applications, Journal of Materials Science 10(6), 1049–1081.
  • 11. Liu D., Cong W., Pei Z. and Tang Y. 2012. A cutting force model for rotary ultrasonic machining of brittle materials. International Journal of Machine Tools and Manufacture, 52(1), 77-84. doi:10.1016/j.ijmachtools.2011.09.006.
  • 12. Marshall D.B., Lawn B.R. and Evans A.G. 1982. Elastic/plastic indentation damage in ceramics: the lateral crack system, Journal of the American Ceramic Society 65 (11), 561–566.
  • 13. Ostojic P. and Mcpherson R. 1987. A review of indentation of fracture: its development, principles and limitations, International Journal of Fracture 33, 297–312.
  • 14. Zhang C., Zhang J. and Feng P. 2013. Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. The International Journal of Advanced Manufacturing Technology, 69(1- 4), 161–170. doi:10.1007/s00170-013-5004-z.
  • 15. Zhao X.L., Fowell R.J., Roegiers J.-C. and Xu C. 1994. Rock fracture-toughness determination by the Brazilian test, by H. Guo, N.I. Aziz, L.C. Schmidt. Engineering Geology, 38, 181–184. doi:10.1016/0013-7952(94)90033-7.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e69d03eb-3284-4c91-868d-d3f8f9d91f19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.