PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variability of zinc content in cultivated luvisols of the Pałuki region (Central Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zmienność zawartości cynku w uprawowych glebach płowych regionu Pałuki (Polska Centralna)
Języki publikacji
EN
Abstrakty
EN
Zinc is an essential microelement that is required for the proper growth and development of crops, and its content in the soil varies. Due to the physiological functions it performs in living organisms, zinc is considered an essential element in the nutrition of plants and animals. The total forms of trace elements do not fully reflect the possibilities of their absorption. They provide only approximate ranges of the soil’s abundance in a given ingredient. Plants can obtain microelements only from bioavailable forms.The content of available forms of elements in soils is one of the important determinants of plant yield. Zinc deficiency is a serious problem in agricultural soils around the world because it results in reduced crop yields. The aim of the study was to assess the content of total and available forms of zinc in the surface horizons of arable Luvisols in the Pałuki region, that has been intensively used for agriculture. Basic physical and chemical soil properties were determined using methods commonly applied by soil science laboratories. The content of total zinc forms was determined using the Crock and Severson method. Forms bioavailable to plants were identified using the Lindsay and Norvell method. The content of both forms of zinc was determined by atomic adsorption spectroscopy (AAS). In the analysed samples of arable land, low contents of total and available forms of zinc were recorded. The correlation analysis that was carried out confirmed that the content of these forms in the soil is significantly influenced by reaction. Due to the low levels of zinc forms found in the studied agricultural soils, It is necessary to monitor the amounts of this trace element.
PL
Cynk jest mikroelementem niezbędnym do prawidłowego wzrostu i rozwoju roślin uprawnych, a jego zawartość w glebie jest zróżnicowana. Ze względu na funkcje fizjologiczne, jakie pełni w organizmach żywych, cynk uznawany jest za pierwiastek niezbędny w żywieniu roślin i zwierząt. Formy całkowite pierwiastków śladowych nie odzwierciedlają w pełni możliwości ich wchłaniania. Podają jedynie przybliżone zakresy zasobności gleby w dany składnik. Rośliny mogą pozyskiwać mikroelementy jedynie z form biodostępnych. Zawartość przyswajalnych form pierwiastków w glebie jest jednym z ważnych czynników warunkujących plonowanie roślin. Niedobór cynku jest poważnym problemem w glebach rolniczych na całym świecie, ponieważ powoduje zmniejszenie plonów. Celem badań była ocena zawartości form całkowitych i przyswajalnych cynku w poziomach powierzchniowych uprawnych gleb płowych regionu Pałuk, który od dziesięcioleci jest intensywnie użytkowany rolniczo. Podstawowe właściwości fizyczne i chemiczne gleby określono metodami powszechnie stosowanymi w laboratoriach gleboznawczych. Zawartość form cynku całkowitego oznaczono metodą Crocka i Seversona, a formy biodostępne dla roślin metodą Lindsaya i Norvella. Zawartość obu form cynku oznaczono metodą atomowej spektroskopii adsorpcyjnej (AAS). W analizowanych próbach gruntów ornych stwierdzono niską zawartość form całkowitych i przyswajalnych cynku. Przeprowadzona analiza korelacji potwierdziła, że na zawartość tych form w glebie istotny wpływ ma odczyn. Ze względu na niską zawartość form cynku w badanych glebach rolniczych, konieczne jest monitorowanie ilości tego mikroelementu.
Rocznik
Tom
Strony
120--132
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology Department of Biogeochemistry and Soil Science, ul. Bernardyńska 6, 85-029 Bydgoszcz
Bibliografia
  • 1.Ahmad, W., Watts, M.J., Imtiaz, M., Ahmed, I., Zia, M.H. (2012). Zinc deficiency in soil, crops and humans. Agrochimica 2: 86-97.
  • 2. Allowey, B.J. (2004). Zinc in soils and crop nutrition. International Zinc Association, IZA Publications, Brussels.
  • 3. Alloway, B. J. (2009). Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health 31(5): 537-548.
  • 4. Alsafran, M., Usman, K., Ahmed, B., Rizwan, M., Saleem, M. H., Al Jabri, H. (2022). Understanding the phytoremediation mechanisms of potentially toxic elements: A proteomic overview of recent advances. Frontiers and Plant Sciences 13. http://doi.org/10.3389/fpls.2022.881242.
  • 5. Badora, A. (2002). Influence of pH on the mobility of elements in soils. Advances Agricultural Sciences Problem Issues 482: 21-36. (in Polish).
  • 6. Baran, A., Jasiewicz, Cz. (2009). The toxic content of zinc and cadmium in soil to different plantspecies. Environmental Protection and Natural Resources 40: 157-164. (in Polish).
  • 7. Barczak, B., Murawska, B., Spychaj-Fabisiak, E. (2009). The content of available zinc in soil depending on the soil type and sulphur fertilization. Advences Agricultural Sciences Problem Issues 541(1): 39-45. (in Polish).
  • 8. Barman, H., Das, S.K., Roy, A. (2018). Zinc in Soil Environment for Plant Health and Management Strategy. Universal Journal of Agricultural Research 6(5): 149-154. http://doi.org/10.13189/ujar.2018.060501.
  • 9. Bartkowiak, A., Długosz, J., Zamorski, R. (2014). The profile distribution of zinc in arable alluvial soils of naturally higher content of calcium carbonate. Journal of Elementology 19(1): 7-15. http://doi.org/10.5601/jelem.2014.19.1.610.
  • 10. Bartkowiak, A., Lemanowicz, J., Kobierski, M. (2015). The content of macro- and microelements and the phosphatase activity of soils under a varied plant cultivation technology. Eurasian Soil Science 48(12): 1354-1360.
  • 11. Chojnicki, J., Kowalska, M. (2009). Soluble Zn, Cu, Pb and Cd in cultivated luvisols developed from superficial silts of the Blonie-Sochaczew Plain. Environmental Protection and Natural Resources 40: 49-55.
  • 12. Crock, J., Severson, R. (1980). Four reference soil and rock samples for measuring element availability in the Western Energy Regions. Geochemical Survey Circular, 841, 1-16.
  • 13. Cuske, M., Gersztyn, L., Gałka, B., Pora, E. (2013). The influence of reaction on solubility of Zn in contaminated soils. Episteme 18(3): 271-278. (in Polish).
  • 14. Glińska-Lewczuk, K., Bieniek, A., Sowiński, P., Obolewski, K., Burandt, P., Timofte, C. (2014). Variability of zinc content in soils in a postglacial river valley - a geochemical landscape approach. Journal of Elementology 19(2): 361-376. https://doi.org/10.5601/jelem.2014.19.1.618.
  • 15. Gonet, S.S. (2007). Organic matter in the European Union thematic strategy on soil protection. Soil Sciences Annual 58(3/4): 15-26. (in Polish).
  • 16. Haynes, R.J. (2005). Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview. Advances in Agronomy 85: 221-268.
  • 17. http://doi.org/10.1016/s0065-2113(04)85005-3.
  • 18. Jaworska, H. and Dąbkowska-Naskręt, H. (2012). Influence of the Głogów copper works on the content of mobile forms of copper and zinc in arable soils. Journal of Elementology 17(1): 57-66. https://doi.org/10.5601/jelem.2012.17.1.05.
  • 19. Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. 4th. ed., CRC Press https://doi.org/10.1201/b10158.
  • 20. Kobierski, M., Staszak, E., Kondratowicz-Maciejewska, K., Ruszkowska, A. (2011). Efect of land-use types on content of heavy metals and their distribution in profiles of arenosols. Environmental Protection and Natural Resources 49: 163-177. (in Polish).
  • 21. Kobierski, M., Kondratowicz-Maciejewska, K., Kociniewska, K. (2015). Soil quality assessment of Phaeozems and Luvisols from the Kujawy region (central Poland). Soil Sciences Annual 66(3): 111-118. https://doi.org/10.1515/ssa-2015-0026.
  • 22. Koncewicz-Baran, M., Gondek, K. (2010). Content of trace elements in agricultural soils. Infrastructure and Ecology of Rural Areas 1: 65-74. (in Polish).
  • 23. Solon, J., Borzyszkowski, J., Bidlasik, M., Richling, A., Badora, K., Balon, J., Brzezinska-Wojcik, T., Chabudzinski, L., Dobrowolski, R., Grzegorczyk, I., et al. (2018). Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91: 143-170. https://doi.org/10.7163/gpol.0115.
  • 24. Korzeniowska, J. (2009). The role of zinc in wheat cultivation. Advences in Agricultural Sciences 2: 3-17. (in Polish).
  • 25. Korzeniowska, J., Stanisławska-Glubiak, E. (2004). Effect of organic matter on the availability of zinc and others micronutrients to wheat plants. Advences Agricultural Sciences Problem Issues, 502: 157-164. (in Polish).
  • 26. Kwiatkowska-Malina, J. (2018). Qualitative and quantitative soil organic matter estimation for sustainable soil management. Journal of Soils Sediments 18: 2801-2812. https://doi.org/10.1007/s11368-017-1891-1.
  • 27. Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., Han, W. (2019). A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil and Sediment Contamination 28(4): 380-394. http://doi.org/10.1080/15320383.2019.1592108.
  • 28. Lindsay, W.L., Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, copper. Soil Science Society of America Journal 43: 421-428.
  • 29. Obrador, A., Alvarez, J.M., Lopez-Valdivia, L.M., Gonzalez, D., Novillo, J., Rico, M.I. (2007). Relationships of soil properties with Mn and Zn distribution in acidic soils and their uptake by a barley crop. Geoderma 137: 432-443.
  • 30. PN-ISO 10390 (1997). Chemical and Agricultural Analysis: Determining Soil pH. Polish Standards Committee: Warszawa, Poland.
  • 31. PN-ISO 14235 (2003). Chemical and Agricultural Analysis-Soil Quality-Determining the Content of Organic Carbon by Oxidation of Potassium Dichromate (VI) in the Environment of Sulphuric acid (VI). Polish Standards Committee: Warsaw, Poland.
  • 32. Rutkowska, B., Szulc, W., Łabętowicz, J. (2014). Zinc speciation in soil solution of selected Poland’s agricultural soils. Zemdirbyste-Agriculture 101(2): 147-152. http://doi.org/10.13080/z-a.2014.101.019.
  • 33. Skwaryło-Bednarz, B., Kwapisz, M., Onuch, J., Krzepiłko, A. (2014). Assessment of the content of heavy metals and catalase activity in soils located inprotected zone of the Roztoczenational Park. Acta Agrophysica 21(3): 351-359. (in Polish).
  • 34. Terelak, H., Motowicka-Terelak, T., Stuczyński, T., Pietruch, C. (2000). Trace elements (Cd, Cu,Ni, Pb, Zn) in agricultural soils of Poland. IUNG, Warszawa, 69 pp. (in Polish).
  • 35. Tripathi, D.K., Singh, S., Singh, S., Mishra S., Chauhan, D.K., Dubey, N.K. (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum 37(7): 1-14. http://doi.org/10.1007/s11738-015-1870-3.
  • 36. Yang, M., Li, Y., Liu, Z., Tian, J., Liang, L., Qiu, Y., Wang, G., Du, Q., Cheng, D., Cai, H., Shi,L., Xu, F., Lian, X. (2020). A high activity zinc transporter OsZIP9 mediates zinc uptake in rice. The Plant Journal 103: 1695-1709. http://doi.org/10.1111/tpj.14855.
  • 37. United States Department of Agriculture (2006). Keys to Soil Taxonomy. 10th. ed., United States Department of Agriculture, Natural Resources Conservation Service, 1-33.
  • 38. Van Oort, F., Jongmans, A.G., Citeau, L., Lamy, I., Chevallier, P. (2006). Microscale Zn and Pb distribution patterns in subsurface soil horizons: an indication for metal transport dynamics. European Journal of Soil Science 57(2): 154-166. https://doi.org/10.1111/j.1365-2389.2005.00725.x.
  • 39. Zeng, H., Wu, H., Yan, F., Yi, K., Zhu, Y. (2021). Molecular regulation of zinc deficiency responses in plants. Journal of Plant Physiology 261: 153419. http://doi.org/10.1016/j.jplph.2021.153419.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e5cbb836-7645-47b2-8350-68aa6defd861
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.