PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A probabilistic tool for multi-hazard risk analysis using a bow‑tie approach: application to environmental risk assessments for geo‑resource development projects

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a methodology and a computational tool for performing environmental risk assessments for georesource development projects. The main scope is to implement a quantitative model for performing highly specialised multi-hazard risk assessments in which risk pathway scenarios are structured using a bow-tie approach, which implies the integrated analysis of fault trees and event trees. Such a model needs to be defined in the interface between a natural/built/ social environment and a geo-resource development activity perturbing it. The methodology presented in this paper is suitable for performing dynamic environmental risk assessments using state-of-the-art knowledge and is characterised by: (1) the bow-tie structure coupled with a wide range of probabilistic models flexible enough to consider different typologies of phenomena; (2) the Bayesian implementation for data assimilation; (3) the handling and propagation of modelling uncertainties; and (4) the possibility of integrating data derived form integrated assessment modelling. Beyond the stochastic models usually considered for reliability analyses, we discuss the integration of physical reliability models particularly relevant for considering the effects of external hazards and/or the interactions between industrial activities and the response of the environment in which such activities are performed. The performance of the proposed methodology is illustrated using a case study focused on the assessment of groundwater pollution scenarios associated with the management of flowback fluids after hydraulically fracturing a geologic formation. The results of the multi-hazard risk assessment are summarised using a risk matrix in which the quantitative assessments (likelihood and consequences) of the different risk pathway scenarios considered in the analysis can be compared. Finally, we introduce an open-access, web-based, service called MERGER, which constitutes a functional tool able to quantitatively evaluate risk scenarios using a bow-tie approach.
Czasopismo
Rocznik
Strony
385--410
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Via Donato Creti 12, 40128 Bologna, Italy
  • Center for the Analysis and Monitoring of Environmental Risks (AMRA), Via Nuova Agnano 11, 80123 Naples, Italy
autor
  • Academic Computer Centre Cyfronet, AGH University of Science and Technology, Ul. Nawojki 11, 30‑950 Kraków, Poland
  • Center for the Analysis and Monitoring of Environmental Risks (AMRA), Via Nuova Agnano 11, 80123 Naples, Italy
  • Center for the Analysis and Monitoring of Environmental Risks (AMRA), Via Nuova Agnano 11, 80123 Naples, Italy
Bibliografia
  • 1. Aspinall WP (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions. Stat Volcanol. https://doi.org/10.1144/IAVCEI001Google Scholar
  • 2. Bedford T, Cooke R (2001) Probabilistic risk analisys: foundations and methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  • 3. Budnitz RJ, Apostolakis G, Boore DM, Lloyd C, Coppersmith KJ, Cornell A, Morris PA (1998) Use of technical expert panels: applications to probabilistic seismic hazard analysis*. Risk Anal 18(4):463–469. https://doi.org/10.1111/j.1539-6924.1998.tb00361.xCrossRefGoogle Scholar
  • 4. Burby RJ (ed) (1998) Cooperating with nature: confronting natural hazards with land-use planning for sustainable communities. The National Academies Press, WashingtonGoogle Scholar
  • 5. Carrasco JA, Sune V (1999) An algorithm to find minimal cuts of coherent fault-trees with event-classes, using a decision tree. IEEE Trans Reliab 48(1):31–41CrossRefGoogle Scholar
  • 6. Carter A (1986) Mechanical reliability, 2nd edn. Macmillan, LondonCrossRefGoogle Scholar
  • 7. Cooke R (1991) Experts in uncertainty. Opinion and subjective probability in science. Environmental Ethics and Science Policy Series. Oxford University Press, OxfordGoogle Scholar
  • 8. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583Google Scholar
  • 9. Craft R (2004) Crashes involving trucks carrying hazardous materials, Technical Report FMCSA-RI-04–024. Federal Motor Carrier Safety Administration. U.S. Dept. of Transportation, WashingtonGoogle Scholar
  • 10. Dasgupta A, Pecht M (1991) Material failure mechanisms and damage models. IEEE Trans Reliab 40(5):531–536CrossRefGoogle Scholar
  • 11. Davies G, Griffin J, Løvholt F, Glimsdal S, Harbitz C, Thio HK, Lorito S, Basili R, Selva J, Geist E, Baptista MA (2018) A global probabilistic tsunami hazard assessment from earthquake sources. Geol Soc Lond Spec Publ 456(1):219–244. https://doi.org/10.1144/SP456.5CrossRefGoogle Scholar
  • 12. Ebeling C (1997) An introduction to reliability and maintainability engineering. McGraw-Hill, BostonGoogle Scholar
  • 13. EERI Committee on Seismic Risk (1989) The basics of seismic risk analysis. Earthq Spectra 5(4):675–702. https://doi.org/10.1193/1.1585549CrossRefGoogle Scholar
  • 14. Ferdous R, Khan F, Veitch B, Amyotte P (2007) Methodology for computer-aided fault tree analysis. Process Saf Environ Prot 85(1):70–80. https://doi.org/10.1205/psep06002CrossRefGoogle Scholar
  • 15. Garcia-Aristizabal A (2017) Multi-risk assessment in a test case, Technical report. Deliverable 7.3, H2020 SHEER (Shale gas exploration and exploitation induced risks) project, Grant n. 640896Google Scholar
  • 16. Garcia-Aristizabal A (2018) Modelling fluid-induced seismicity rates associated with fluid injections: examples related to fracture stimulations in geothermal areas. Geophys J Int 215(1):471–493. https://doi.org/10.1093/gji/ggy284CrossRefGoogle Scholar
  • 17. Garcia-Aristizabal A, Marzocchi W, Fujita E (2012) A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull Volcanol 74(2):545–558. https://doi.org/10.1007/s00445-011-0542-4CrossRefGoogle Scholar
  • 18. Garcia-Aristizabal A, Bucchignani E, Palazzi E, D’Onofrio D, Gasparini P, Marzocchi W (2015) Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania. Nat Hazards 75(1):289–320. https://doi.org/10.1007/s11069-014-1324-zCrossRefGoogle Scholar
  • 19. Garcia-Aristizabal A, Capuano P, Russo R, Gasparini P (2017) Multi-hazard risk pathway scenarios associated with unconventional gas development: identification and challenges for their assessment. Energy Proc 125:116–125. https://doi.org/10.1016/j.egypro.2017.08.087CrossRefGoogle Scholar
  • 20. Gasparini P, Garcia-Aristizabal A (2014) Seismic risk assessment, cascading effects. In: Beer M, Kougioumtzoglou IA, Patelli E, Au ISK (eds) Encyclopedia of earthquake engineering. Springer, Berlin, pp 1–20. https://doi.org/10.1007/978-3-642-36197-5_260-1Google Scholar
  • 21. Gelman A, Carlin J, Stern H, Rubin D (1995) Bayesian data analysis. Chapman & Hall, LondonGoogle Scholar
  • 22. Gould J, Glossop M (2000) New failure rates for land use planning QRA: update. Health and Safety Laboratory, report RAS/00/10Google Scholar
  • 23. Hall P, Strutt J (2003) Probabilistic physics-of-failure models for component reliabilities using Monte Carlo simulation and Weibull analysis: a parametric study. Reliab Eng Sys Saf 80(3):233–242. https://doi.org/10.1016/S0951-8320(03)00032-2CrossRefGoogle Scholar
  • 24. Han SH, Lim HG (2012) Top event probability evaluation of a fault tree having circular logics by using Monte Carlo method. Nucl Eng Des 243:336–340. https://doi.org/10.1016/j.nucengdes.2011.11.029CrossRefGoogle Scholar
  • 25. Iannacchione AT (2008) The Application of major hazard risk assessment MHRA to eliminate multiple fatality occurrences in the U.S. minerals industry, Technical report. National Institute for Occupational Safety and Health, Spokane Research Laboratory. https://lccn.loc.gov/2009285807
  • 26. Ingraffea AR, Wells MT, Santoro RL, Shonkoff SBC (2014) Assessment and risk analysis of casing and cement impairment in oil and gas wells in Pennsylvania, 2000–2012. Proc Natl Acad Sci 111(30):10955–10960. https://doi.org/10.1073/pnas.1323422111CrossRefGoogle Scholar
  • 27. IS-EPOS (2018) IS-EPOS platform user guide, Technical report (last Accessed May 2018). https://tcs.ah-epos.eu/eprints/1737
  • 28. Kennedy R, Cornell C, Campbell R, Kaplan S, Perla H (1980) Probabilistic seismic safety study of an existing nuclear power plant. Nucl Eng Des 59(2):315–338. https://doi.org/10.1016/0029-5493(80)90203-4CrossRefGoogle Scholar
  • 29. Khakzad N, Khan F, Amyotte P (2012) Dynamic risk analysis using bow-tie approach. Reliab Eng Syst Saf 104:36–44. https://doi.org/10.1016/j.ress.2012.04.003CrossRefGoogle Scholar
  • 30. Khakzad N, Khan F, Amyotte P (2013) Quantitative risk analysis of offshore drilling operations: a Bayesian approach. Saf Sci 57:108–117CrossRefGoogle Scholar
  • 31. Khakzad N, Khakzad S, Khan F (2014) Probabilistic risk assessment of major accidents: application to offshore blowouts in the Gulf of Mexico. Nat Hazards 74(3):1759–1771CrossRefGoogle Scholar
  • 32. Kumamoto H, Tanaka K, Inoue K, Henley EJ (1980) Dagger-sampling Monte Carlo for system unavailability evaluation. IEEE Trans Reliab 29(2):122–125CrossRefGoogle Scholar
  • 33. Lee WS, Grosh DL, Tillman FA, Lie CH (1985) Fault tree analysis, methods, and applications: a review. IEEE Trans Reliab 34(3):194–203. https://doi.org/10.1109/TR.1985.5222114CrossRefGoogle Scholar
  • 34. Leemis L (2009) Reliability. Probabilistic models and statistica methods, 2nd edn. Library of Congress Cataloging-in-Publication data, LavergneGoogle Scholar
  • 35. Liu Z, Nadim F, Garcia-Aristizabal A, Mignan A, Fleming K, Luna BQ (2015) A three-level framework for multi-risk assessment. Georisk Assess Manag Risk Eng Syst Geohazards 9(2):59–74CrossRefGoogle Scholar
  • 36. Marzocchi W, Sandri L, Selva J (2008) BET−−EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70(5):623–632. https://doi.org/10.1007/s00445-007-0157-yCrossRefGoogle Scholar
  • 37. Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62(2):551–573. https://doi.org/10.1007/s11069-012-0092-xCrossRefGoogle Scholar
  • 38. Melchers RE (1999) Structural reliability analysis and prediction, 2nd edn. Wiley-Interscience, LondonGoogle Scholar
  • 39. Meyer M, Booker J (1991) Eliciting and analyzing expert judgement: a practical guide. Academic Press Limited, San DiegoGoogle Scholar
  • 40. NYSDEC (2011) Revised draft supplemental generic environmental impact statement (SGEIS) on the oil, gas and solution mining regulatory program: well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus shale and other low-permeability gas reservoirs, Technical reportGoogle Scholar
  • 41. Rao KD, Gopika V, Rao VS, Kushwaha H, Verma A, Srividya A (2009) Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliab Eng Syst Saf 94(4):872–883. https://doi.org/10.1016/j.ress.2008.09.007CrossRefGoogle Scholar
  • 42. Rausand M, Høyland A (2004) System reliability theory: models, statistical methods and applications. Wiley-Interscience, HobokenGoogle Scholar
  • 43. Ruijters E, Stoelinga M (2015) Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput Sci Rev 15–16:29–62. https://doi.org/10.1016/j.cosrev.2015.03.001CrossRefGoogle Scholar
  • 44. Selva J, Sandri L (2013) Probabilistic seismic hazard assessment: combining Cornell-like approaches and data at sites through Bayesian inference. Bull Seismol Soc Am 103(3):1709. https://doi.org/10.1785/0120120091CrossRefGoogle Scholar
  • 45. Siu NO, Kelly DL (1998) Bayesian parameter estimation in probabilistic risk assessment. Reliab Eng Syst Saf 62(1):89–116. https://doi.org/10.1016/S0951-8320(97)00159-2CrossRefGoogle Scholar
  • 46. Soeder DJ, Sharma S, Pekney N, Hopkinson L, Dilmore R, Kutchko B, Stewart B, Carter K, Hakala A, Capo R (2014) An approach for assessing engineering risk from shale gas wells in the United States. Int J Coal Geol 126:4–19. https://doi.org/10.1016/j.coal.2014.01.004CrossRefGoogle Scholar
  • 47. Stanton EA, Ackerman F, Kartha S (2009) Inside the integrated assessment models: four issues in climate economics. Clim Dev 1(2):166–184. https://doi.org/10.3763/cdev.2009.0015CrossRefGoogle Scholar
  • 48. Taheriyoun M, Moradinejad S (2014) Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation. Environ Monit Assess 187(1):4186. https://doi.org/10.1007/s10661-014-4186-7CrossRefGoogle Scholar
  • 49. Yang M, Khan FI, Lye L (2013) Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents. Process Saf Environ Prot 91(5):333–342. https://doi.org/10.1016/j.psep.2012.07.006CrossRefGoogle Scholar
  • 50. Yevkin O (2010) An improved Monte Carlo method in fault tree analysis. In: 2010 Proceedings—annual reliability and maintainability symposium (RAMS), pp 1–5
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4f140a5-20df-4ed3-9116-59a1a870125a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.