Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper is of practical importance and describes the construction of a test rig and the measurement method for determining the relative emissivity coefficient of thermosensitive thin polymer coatings. Polymers are high-molecular chemical compounds that produce chains of repeating elements called ‘mers’. The polymers can be natural and artificial. The former ones form the building material for living organisms, the latter – for plastics. In this work, the words plastics and polymers are used as synonyms. Some plastics are thermosensitive materials with specific physical and chemical properties. The calorimetric method mentioned in the title consists of two steps. The first stage, described here, involves very accurately measuring the emissivity of black paint with the highest possible relative emissivity coefficient, which covers the surface of the heater and the inner surface of the chamber. In the second step, the thermosensitive polymer will be placed on the inner surface of the chamber, while black paint with a known emissivity coefficient will remain on the heater. Such a way of determining the properties of thermosensitive polymers will increase the error of the method itself, but at the same time will avoid melting of the polymer coating. During the tests, the results of which are presented in this work, the emissivity coefficient of the black paint was obtained in the range of 0.958–0.965.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
161--177
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics and Renewable Energy Sources, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] Qu J., Song J.R., Qin J., Song Z.N., Zhang W.D., Shi Y.X., Shang T., Zhang H.Q., He Z.V., Xue X.: Transparent thermal insulation coatings for energy efficient glass windows and curtain walls. Energ. Buildings 77(2014), 1–10.
- [2] Chen Y., Wang M.D., Xu M.D., Li L.: Preparation of AZO/acrylic resin transparent insulation coating. Adv. Mat. Res. 369-398(2012), 229–232.
- [3] Wittwer V.: The use of transparent insulation materials and optical switching layers in window systems. Renew. Energ. 5(1994), 318–323.
- [4] Morel S.: The influence of a radiated heat exchanger surface on heat transfer. Arch. Thermodyn. 36(2015), 3, 161–174.
- [5] Paneri A., Wong I.L., Burek S.: Transparent insulation materials: An overview on past, present and future developments. Sol. Energy 184(2019), 59–83.
- [6] Kaushika N.D., Sumathy K.: Solar transparent insulation materials: a review. Renew. Sust. Energ. Rev. 7(2003), (4), 317–351.
- [7] Wong I.L., Eames P.C., Perera R.S.: A review of transparent insulation systems and the evaluation of payback period for building applications. Sol. Energy 81(2007),1058–1071.
- [8] Struhala K., Cekon M., Slavik R.: Life Cycle Assessment of solar facade concepts based on transparent insulation materials. Sustainability-Basel 10(2018), 11, 4212.
- [9] Swirska-Perkowska J., Kucharczyk K., Wyrwal J.: Energy efficiency of a solar wall with transparent insulation in Polish climatic conditions. Energies 13(2020), 4, 859.
- [10] Chaurasia PBL.: Transparent insulation material in solar system for candle production. Energ. Convers. Manage. 41(2020), 1569–1584.
- [11] Prakash J., Garg H.P., Jha R., Hrishikesan D.S.: Solar thermal-systems with transparent insulation. Energ. Convers. Manage. 33(1992), 987–996.
- [12] Jia H., Zhu J.J., Debeli D.K, Li Z.L., Guo J.S.: Solar thermal energy harvesting properties of spacer fabric composite used for transparent insulation materials. Sol. Energ. Mat. Sol. C 174(2018), 140–145.
- [13] Tang J., Di F., Xu X., Xiao Y., Che J.: Transparent conductive graphene films. Prog. Chem. 24(2012), 501–511.
- [14] Kholmanov I.N., Stoller M.D., Edgeworth J., Lee W.H., Li H.F., Lee J.H., Barnhart C., Potts J.R., Piner R., Inwande Ak D., Barrick J.E., Ruoff R.: Nanostructured hybrid transparent conductive films with antibacterial properties. ACS Nano 6(2012),5157–5163.
- [15] Vitelaru C., Parau AC., Kiss AE., Pana I., Dinu M., Constantin LR., Vladescu A., Tonofre L.E., Adochite C.S., Costinas S., Rogozea L., Badea M., Idomir M.E.: Silvercontaining thin films on transparent polymer foils for antimicrobial applications. Coatings 12(2022), 170.
- [16] Froyen A.A.F., Grossiord N., Heer J., Meerman T., Yang L.T., Lub J., Schenning A.P.H.J.: Ink-deposited transparent electrochromic structural colored foils. ACS Appl. Mater. Inter. 14(2022), 39375–39383.
- [17] Blankenburg L., Schroedner M.: Perhydropolysilazane derived silica for flexible transparent barrier foils using a reel-to-reel wet coating technique: Single- and multilayerstructures. Surf. Coat Tech. 275(2015), 193–206.
- [18] Syrowa L., Ravas R., Grman J.: The use of schlieren visualization method in the diagnostic of optically transparent polymeric foils. J. Electr. Eng. 58(2007), 257–263.
- [19] Hagen N.: Review of thermal infrared polarimetry, I: theory. Opt. Eng. 61(2022), 7,070902.
- [20] Hagen N.: Review of thermal infrared polarimetry, part 2: experiment. Opt. Eng.61(2022), 8, 080901.
- [21] Bieszczad G., Gogler S., Swiderski J.: Review of design and signal processing of polarimetric imaging cameras. Opto-Electron Rev. 29(2021), 5–12.
- [22] Kruczek T.: Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky. Arch. Thermodyn. 36(2015), 1, 67–82.
- [23] Musiał D., Wyczółkowski R.: Thermovision determination of the furnace chamber environment temperature using the technical black-body model. Arch. Thermodyn. 31(2010), 4, 25–35.
- [24] Fu T.R., Tan P., Duan M.H.: Simultaneous measurements of high-temperature total hemispherical emissivity and thermal conductivity using a steady-state calorimetric technique. Meas. Sci. Techno. 26(2015).
- [25] Zang B., Redgrove J., Clark J.: A transient method for total emissivity determination. Int. J. Thermophys. 25(2004), 423–438.
- [26] Fukuzawa K., Ohnishi A., Nagasaka Y.: Total hemispherical emittance of polyimide films for space use in the temperature range from 173 to 700 K. Int. J. Thermophys.35(2002), 319–331.
- [27] Vikhareva NA., Cherepanov VY.: Radiation-calorimetric method of measurements for the thermal emissivity of heat radiators. Meas. Tech.+ 59(2016), 734–737.
- [28] Hobler T.: Heat Movement and Exchangers. WNT, Warszawa 1971 (in Polish).
- [29] Kostowski E.: Heat Flow. Wydawn. Politechniki Śląskiej, Gliwice 2006 (in Polish).
- [30] Kostowski E., Górniak H., Sikora J., Szymczyk J., Ziębik A.: A collection of tasks related to heat flow. Wydawn. Politechniki Śląskiej, Gliwice 2003 (in Polish).
- [31] Pudlik W.: Heat Exchange and Exchangers. Wydawn. Politechniki Gdańskiej, Gdańsk 2012 (in Polish).
- [32] Pelińska-Olko E., Lewkowicz M.: Numerical prediction of steady state temperature based on transient measurements. In: Proc. MATEC Web Conf. 240(2018), 05024.
- [33] Wedrychowicz W.: Thermocouple Temperature Measurement. Wydawn. Politechniki Wrocławskiej, Wrocław 2017 (in Polish).
- [34] Liu B., Huang Q.H., Wang P.Y.: Influence of surrounding gas temperature on thermocouple measurement. Case Stud. Therm. Eng. 19(2020), 100627.
- [35] Liu H.T., Shao D., Li B.Q.: Theory analysis of thermocouple temperature measurement. Appl. Mech. Mater. 239-240(2013), 749–753.
- [36] Wedrychowicz W.: Temperature Measurement with Metal and Semiconductor Resistance Thermocouples. Wydawn. Politechniki Wrocławskiej, Wrocław 2015 (in Polish).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e4c392dd-4005-4b20-913b-376084131d9f