Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The present work is aimed to investigate the Deep Drawing process of Mg alloy sheet in Warm conditions, since through the temperature temperature the number of independent slip systems of the Mg alloys can be enlarged. Design/methodology/approach: A FE model and an equipment for warm deep drawing tests were created, since an experimental-numerical method was adopted; the most efficient heating positioning and the most suitable way of performing the WDD process was evaluated using data coming from the numerical model and temperature and punch load acquisition coming from experimental activity. Findings: Limit Drawing Ratio (LDR) equal to 2.6 for AZ31 Mg alloy (cross rolled, thickness 0.6mm) was obtained at the temperature 170oC using heater embedded in the female die; Drawing Ratio equal to 3.1 for the same Mg alloy (thickness 0.6mm) was obtained setting the temperature of the blank holder at 250oC (throughout heaters embedded in it) and cooling the central part using a water cooled punch. Research limitations/implications: Next step of the research will be to evaluate the optimal value of process parameters (speed, temperature and blank holder pressure) in order to draw the process window. Practical implications: The process with controlled heating and cooling technology can be applied in industrial production of a wide range of Mg alloy parts (structural components, covers for computer, communication and customer electronic, sportive equipments). Originality/value: Specific heating and cooling system were designed to analyse the influence of the different heating strategies combined with or without punch cooling on the WDD of AZ31 Mg alloy sheets.
Wydawca
Rocznik
Tom
Strony
111--118
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical & Management Engineering, Politecnico of Bari, 70100 Bari, Italy
autor
- Department of Mechanical & Management Engineering, Politecnico of Bari, 70100 Bari, Italy
autor
- Department of Mechanical & Management Engineering, Politecnico of Bari, 70100 Bari, Italy
autor
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
autor
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Bibliografia
- [1] Z. Trojanov, P. Lukac: “Compressive deformation behaviour of magnesium alloys”, J. of Materials Processing Tech., (2005), Vol. 162–163, pp. 416–421.
- [2] L. Cizek, M. Greger, L. Pawlica, L.A. Dobrzanski, T. Tanski: “Study of selected properties of magnesium alloy AZ91 after heat treatment and forming”, J. of Materials Processing Tech., (2004), Vol. 157–158, pp. 466–471.
- [3] M. Murata, T. Kuboki, T. Murai: “Compression spinning of circular magnesium tube using heated roller tool”, J. Materials Proc. Tech., (2005), Vol. 162–163, pp. 540–545.
- [4] Y.C. Xu, S.H. Zhang, W.T. Zheng, L. Tricarico, G. Palumbo, D. Sorgente: “Investigations on sheet forming of magnesium alloys”, 8th International Conference on Technology of Plasticity, Verona, Italy (2005).
- [5] G. Ambrogio, L. Filice, G. Palumbo, S. Pinto: “Prediction of formability extension in deep drawing when superimposing a thermal gradient”, J. of Materials Processing Tech., (2005) Vol. 162–163, pp. 454–460.
- [6] S. Yoshihara, H. Nishimura, H. Yamamoto, K.I. Manabe: “Formability enhancement in magnesium alloy deep drawing by local heating and cooling technique”, J. of Materials Processing Tech., (2003).
- [7] Palaniswamy H., G. Ngaile., T. Altan: “Finite element simulation of magnesium alloy sheet forming at elevated temperatures”, J. of Materials Processing Tech., (2003).
- [8] H. Takuda et all: “Finite element simulation of warm deep drawing of aluminium alloy sheet when accounting for heat conduction”, J. of Materials Processing Tech., (2002).
- [9] J. Gronostajski, A. Matuszak, A. Niechajowicz, Z. Zimniak: “The system for sheet metal forming design of complex parts”, J. of Materials Processing Tech., (2004) Vol. 157–158, pp. 502–507.
- [10] G. Gantar, K. Kuzman, B. Filipic: “Increasing the stability of deep drawing process by simulation based optimization”, J. Mater Proc. Tech., (2005) Vol. 164–165, pp. 1343–1350.
- [11] F.K. Chen, T.B. Huang, C.K. Chang: “Deep Drawing of square cups with magnesium alloy AZ31”, International J. of Machine Tools &Manufacture, 43, 1553-1559 (2003).
- [12] S.H. Zhang, Y.C. Xu, Z.T. Wang, Q.L. Zhang, G. Palumbo, S. Pinto, L. Tricarico: “Formability and process conditions of magnesium alloy sheets”; Magnesium Science, Technology and Applications; edited by: W. Ke, E.H. Han, K. Kainer and A.A. Luo, Trans Tech Publications Ltd, Uetikon-Zuerich - Switzerland; Vols. 488-489 of Materials Science Forum, pp. 453-456.
- [13] H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa: “Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperature”, J. Mater Proc. Tech., (2005) Vol. 164–165, pp. 1258–1262.
- [14] D. Banabic, E. Dannenmann: “Prediction of the influence of yeld locus on the limit strains in sheet metals”, J. Mater Proc. Tech., (2001) Vol. 109, pp. 9–12.
- [15] D. Banabic,T. Kuwabara, T. Balan, D.S. Comsa: “An anisotropic yield criterion for sheet metals”, J. Mater Proc. Tech., (2004) Vol. 157–158, pp. 462–465.
- [16] S.C.V. Lim, M.S. Yong: “Planes train forging of wrought magnesium alloys”, J. Mater Proc. Tech., (2006) Vol. 171, pp. 393–398.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3c9a492-4125-432a-b96a-67c98c8711aa