Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider questions of characterizing a stochastic process X= (Xt, t ≥ 0) by the properties of the first two conditional moments. Our first result is a new version of the classical P. Lévy characterization theorem for martingales. Next we deal with a characterization of processes without continuous trajectories. We consider a special form of the initial state. Namely, we suppose that the r.v. X0 has a polynomial-normal distribution (PND), i.e. the density of X0 is the product of a positive polynomial and a normal density.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
7--18
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Department of Mathematics and Information Science, Warsaw University of Technology, pl. Politechniki 1, 00-661 Warsaw, Poland
Bibliografia
- [1] R. J. Adler, S. Cambanis and G. Samorodnitsky, On stable Markov processes, Stochastic Process. Appl. 34 (1990), pp. 1-17.
- [2] W. Bryc, The Normal Distribution, Characterizations with Applications, Springer, 1995.
- [3] T. Cacoullos and H. Papageorgiou, Characterizations of mixtures of continuous distributions by their posterior means, Scand. Actuar. J. (1984), pp. 23-30.
- [4] M. Evans and T. Swartz, Distribution theory and inference for polynomial-normal densities, Comm. Statist. Theory Methods 23 (4) (1994), pp. 1125-1148.
- [5] A. Plucińska, On a stochastic process determined by the conditional expectation and the conditional variance, Stochastics 10 (1983), pp. 115-129.
- [6] A. Plucińska, Some properties of polynomial-normal distributions associated with Hermite polynomials, Demonstratio Math. 32 (1) (1999), pp. 195-206.
- [7] A. Plucińska and M. Bisińska, Polynomial-Gaussian vectors and polynomial-Gaussian processes, Demonstratio Math. 34 (2) (2001), pp. 359-374.
- [8] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Special Functions (in Russian), Nauka, Moscow 1983.
- [9] W. Timoszyk, A characterization of Gaussian processes that are Markovian, Colloq. Math. 30 (1974), pp. 157-167.
- [10] J. Wesołowski, A characterization of a Gaussian process based on properties of conditional moments, Demonstratio Math. 17 (3) (1984), pp. 795-807.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e31c344f-e0d6-4a56-a2f1-16bd48af5cc0