Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Analysis of works in the field of artificial intelligence allows to make an assumption that today there is a sufficiently developed theoretical basis for the development of intelligent control systems for locomotive control. This will mini mize the risks associated with the human factor on the railways. The paper presents the theoretical rationale for the development of a knowledge base for intelligent locomotive control systems. The approach and structure of the self learning system of intelligent DSS is proposed, the advantage of which is the presence of a fuzzy classifier that works according to the set criteria and determines a fuzzy image of the current train situation. Learning a fuzzy classifier consists in finding a vector K that minimizes the distance between the results of logical inference and experimental data from the sample. The knowledge base is implemented using linguistic variables formalized by methods of fuzzy logic. The use of linguistic values makes it possible to design the base using the usual language of communication, which greatly simplifies both the design process itself and the analysis of the system's performance. Also, the knowledge base has the possibility of constant self-improvement. This happens in two ways. The first is by adding new rules to the knowledge base in case the current situation does not match the existing ones in the base, in which case an additional rule is created and checked for adequacy. The second way is a mechanism for ranking rules in the knowledge base. If the control action of the locomotive driver coincided with the recommendation of DSS in the current situation, then the rating of this recommendation (rule) increases, and in the future the rule selection algorithm will choose one or another control action for the current situation that has the highest rating (that is, it has already been verified several times person). The experiment has shown that the use of intelligent DSS has positive results. On aver age, the DSS made the correct train control decisions faster than the locomotive driver.
Czasopismo
Rocznik
Tom
Strony
169--186
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
- State University of Infrastructure and Technologies, Electromechanics and Rolling Stock of Railways Department, Kyiv , Ukraine
autor
- State University of Infrastructure and Technologies, Automation and Computer-Integrated Technologies of Transport Department, Kyiv, Ukraine
autor
- State University of Infrastructure and Technologies, Electromechanics and Rolling Stock of Railways Department, Kyiv , Ukraine
Bibliografia
- 1. Shvets, A. (2023). Influence of the instability form on the traffic safety indicator of freight rolling stock. Engineering Applications, 2(3), 206-217.
- 2. Albrecht, A., Howlett, P., Pudney, P., Vu, X. & Zhou, P. (2016) The key principles of optimal train control - Part 1: Formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transportation Research Part B: Methodological, 94, 482-508. https://doi.org/10.1016/j.trb.2015.07.023
- 3. Albrecht, A., Howlett, P., Pudney P., Vu, X. & Zhou, P. (2016) The key principles of optimal train control - Part 2: Existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transportation Research Part B: Methodological, 94, 509-538. https://doi.org/10.1016/j.trb.2015.07.024
- 4. Gorobchenko, O. (2021) Theoretical fundamentals of estimatability assessment of train situation signs for work of intellectual locomotive control systems. Transport systems and technologies, 38, 223-231. https://doi.org/10.32703/2617-9040-2021-38-220-21
- 5. Gorobchenko, O. & Nevedrov, O. (2020) Development of the structure of an intelligent locomotive DSS and assessment of its effectiveness, Archives of Transport, 56(4), 47-58. https://doi.org/10.5604/01.3001.0014.5517.
- 6. Janota, A., Pirník, R., Ždánsky, J. & Nagy, P. (2022). Human Factor Analysis of the Railway Traffic Operators. Machines, 10(9), 820. https://doi.org/10.3390/machines10090820.
- 7. Holub, H., Dmytrychenko, M., Kulbovskyi, I. & Sapronova, S. (2023). Modeling of Energy-Saving Technologies in Traction Rolling Stock Projects (Eds.). Proceedings of 7th ASRES International Con ference on Intelligent Technologies, 77-84, Springer, Singapore. https://doi.org/10.1007/978-981-99 1912-3_7.
- 8. Wang, H., Hao, L., Sharma, A. & Kukkar, A. (2022) Automatic control of computer application data processing system based on artificial intelligence. Journal of Inteligent Systems, 31(1), 177-192. https://doi.org/10.1515/jisys-2022-0007.
- 9. Yin, J., Chen, D. & Li, Y. (2016) Smart train operation algorithms based on expert knowledge and ensemble CART for the electric locomotive. Knowledge-Based Systems, 92(С), 78-91. https://doi.org/10.1016/j.knosys.2015.10.016.
- 10. Zhu, L., Chen, C., Wang, H., Yu, F. R. & Tang, T. (2023). Machine Learning in Urban Rail Transit Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems 1-26. https://doi.org/10.1109/tits.2023.3319135.
- 11. Zhou, K., Song, S., Xue, A., You, K. & Wu, H. (2022) Smart train operation algorithms based on expert knowledge and reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(2), 716-727. https://doi.org/10.1109/TSMC.2020.3000073.
- 12. Shen, H. & Yan, J. (2017) Optimal control of rail transportation associated automatic train operation based on fuzzy control algorithm and PID algorithm. Automatic Control Computer Sciences, 51(6), 435-441. https://doi.org/10.3103/S0146411617060086.
- 13. Butko, T., Babanin, A. & Gorobchenko, A. (2015) Rationale for the type of the membership function of fuzzy parameters of locomotive intelligent control systems. Eastern-European Journal of Enterprise Technologies, 1(3), 4-8. https://doi.org/10.15587/1729-4061.2015.35996.
- 14. Liu, Kai-wei., Wang, Xing-Cheng. & Qu, Zhi-hui. (2019) Research on multi-objective optimization and control algorithms for automatic, train operation. Energies, 12(20), 1-22. https://doi.org/10.3390/en12203842.
- 15. Cao, Y., Ma, L. & Zhang, Y. (2018) Application of fuzzy predictive control technology in automatic train operation. Clust. Comput, 22 , 14135-14144. https://doi.org/10.1007/s10586-018-2258-0.
- 16. Zhang, L., Zhang, L., Yang, J., Gao, M. & Li, Y. (2021). Application Research of Fuzzy PID Control Optimized by Genetic Algorithm in Medium and Low Speed Maglev Train Charger. IEEE Access, 9, 152131-152139. https://doi.org/10.1109/access.2021.3123727.
- 17. Dias, U. R. F., Vargas e Pinto, A. C., Monteiro, H. L. M. & Pestana de Aguiar, E. (2024). New perspectives for the intelligent rolling stock classification in railways: an artificial neural networks-based approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(4). https://doi.org/10.1007/s40430-024-04769-2.
- 18. Liu, S., Huang, S., Xu, X., Lloret, J. & Muhammad, K. (2023). Efficient Visual Tracking Based on Fuzzy Inference for Intelligent Transportation Systems. IEEE Transactions on Intelligent Transportation Systems, 1-12. https://doi.org/10.1109/tits.2022.3232242.
- 19. Tang, R., De Donato, L., Besinović, N., Flammini, F., Goverde, R. M. P., Lin, Z., Liu, R., Tang, T., Vittorini, V. & Wang, Z. (2022). A literature review of Artificial Intelligence applications in railway systems. Transportation Research Part C: Emerging Technologies, 140, 103679. https://doi.org/10.1016/j.trc.2022.103679.
- 20. Moaveni, B., Rashidi Fathabadi, F. & Molavi, A. (2022) Fuzzy control system design for wheel slip prevention and tracking of desired speed profile in electric trains. Asian Journal of Control, 24(1), 388 400. https://doi.org/10.1002/asjc.2472.
- 21. Yang, J., Jia, L., Yunxiao, F. & Lu, S. (2017) Speed tracking based energy-efficient freight train control through multi-algorithms combination. IEEE Intelligent Transportation Systems Magazine, 9, 76-90. http://dx.doi.org/10.1109/mits.2017.2666580.
- 22. Zhang, D. (2017) High-speed Train Control System Big Data Analysis Based on Fuzzy RDF Model and Uncertain Reasoning. International Journal of Computers, Communications & Control, 12(4), 577-591. http://dx.doi.org/10.15837/ijccc.2017.4.2914
- 23. Office of Rail and Road. (2021). Rail safety. Retrieved from https://dataportal.orr.gov.uk/media/1999/rail-safety-2020-2021.pdf.
- 24. Commission for Railway Regulation. (2021). 2020 Annual Report to the European Union Agency for Railways. Retrieved from https://www.crr.ie/assets/files/pdf/crr_annual_report_to_era_2020.pdf
- 25. European Union Agency for Railways. (2022). Report on Railway Safety and Interoperability in the EU.
- 26. Finnish Transport and Communications Agency. (2022). Annual Railway Safety Report 2022. Retrieved from https://www.traficom.fi/sites/default/files/media/publication/Turvallisuuden%20vuosikerto mus%202022%20eng.pdf.
- 27. European Union Agency for Railways. (2023). Interoperability Overview 2023. Retrieved from https://www.era.europa.eu/system/files/2023-07/Annual%20overview%20for%20Interoperability%20 %202023.pdf.
- 28. Volodarets, M., Gritsuk, I., Chygyryk, N., Belousov, E., Golovan A., Volska O., Hlushchenko V., Pohor letskyi D. & Volodarets O. (2019) Optimization of Vehicle Operating Conditions by Using Simulation Modeling Software (Eds.). SAE Connected and Automated Vehicle Conference Israel. Springer. (https://doi.org/10.4271/2019-01-0099).
- 29. Akishev, K., Tulegulov, A., Kalkenov, A., Aryngazin, K., Nurtai, Z., Yergaliyev, D., Yergesh, M. & Jumagaliyeva, A. (2023) Development of an intelligent system automating managerial decision-making using big data. Eastern-European Journal of Enterprise Technologies, 6, (3)(126), 27-35. https://doi.org/10.15587/1729-4061.2023.289395.
- 30. Kelarestaghi, K. B., Heaslip, K., Khalilikhah, M., Fuentes, A. & Fessmann, V. (2018) Intelligent Trans portation System Security: Hacked Message Signs. SAE International Journal of Transportation Cyber security and Privacy, 1(2), 75-90. https://doi.org/10.4271/11-01-02-0004.
- 31. Podrigalo, M., Klets, D., Sergiyenko, O., Gritsuk, I. V., Soloviov, O., Tarasov, Y., Baitsur, M., Bulgakov, N., Hatsko, V., Golovan, A., Savchuk, V., Ahieiev, M. & Bilousova, T. (2018). Improvement of the Assessment Methods for the Braking Dynamics with ABS Malfunction. Brake Colloquium & Exhibition - 36th Annual. SAE International. https://doi.org/10.4271/2018-01-1881.
- 32. Zhang, H., & Lu, X. (2020) Vehicle communication network in intelligent transportation system based on Internet of Things. Computer https://doi.org/10.1016/j.comcom.2020.03.041 Communications, 160, 799-806.
- 33. Mikhalevich, M., Yarita, A., Leontiev, D., Gritsuk, I., Bogomolov, V., Klimenko, V. & Saravas, V. (2019) Selection of Rational Parameters of Automated System of Robotic Transmission Clutch Control on the Basis of Simulation Modelling. International Powertrains, Fuels & Lubricants Meeting. SAE International. https://doi.org/10.4271/2019-01-0029.
- 34. Bugayko, D., Ponomarenko, O., Sokolova, N. & Leshchinsky, O. (2023) Determining possibilities for applying theoretical principles of situational risk management in the aviation safety system. Eastern European Journal of Enterprise Technologies, 6(3)(126), 55-66. https://doi.org/10.15587/1729 4061.2023.294763.
- 35. Vermesan, O., Nava, M.D. & Debaillie, B.(2023) Embedded Artificial Intelligence: Devices, Embedded Systems, and Industrial Applications; River Publishers: Alsbjergvej 10, 9260 Gistrup, Denmark, 2023; 1-118. http://dx.doi.org/10.1201/9781003394440.
- 36. Nedashkovskaya, N. І. (2018) A system approach to decision su pport on basis of hierarchical and net work models. Theoretical and applied problems and methods of system analysis, 1 7-18. https://doi.org/10.20535/SRIT.2308-8893.2018.1.01.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2d06d04-9c0a-46bf-9b1a-d47aed2ff28a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.