PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of longitudinal welded tube of aluminum alloy for structural application using friction stir welding process and its characterization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thin-walled aluminum alloy tubes used for structural applications can be produced by various processes among which friction stir welding process (FSW) has emerged rapidly due to its superior welded properties. But, FSW of tubular components is complex due to its curvature which makes it challenging to get the desired quality of the tube. Hence, in the present study, an attempt was made to fabricate longitudinal FSWed tubes of AA5083-O alloy. A novel parameter window highlighting their effects on the weld quality was presented, and the significant process parameters were optimized to get a defect-free good-quality welded tube. In this regard, X-ray micro-computed tomography, hardness and uniaxial tensile tests of the weld zone (WZ) were carried out to assess the weld quality. Negligible amount of porosity was observed in the WZ, and the hardness was comparable to that of the base material. The joint efficiency obtained was 87%, suggesting homogeneity of the WZ. To get further insight into the WZ homogeneity, the failure mechanism along with the microscopic damage initiation characteristic of the tensile samples was studied. Failure of these samples took place in between the nugget zone and the thermo-mechanically affected zone, and a mixed type of fracture was observed. Three types of void nucleation mechanisms viz., inclusion or particle cracking, interface debonding, and matrix cracking coexisted in the welded sample among which particle cracking was the most significant. Also, the surface roughness of the WZ was measured and it was observed that the material flow during the welding process affected the average roughness value.
Rocznik
Strony
art. no. e91, 1--21
Opis fizyczny
Bibliogr. 34 poz., il., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
  • Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
  • Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Bibliografia
  • 1. Shinde S, Bandi P, Detwiler D, Tovar A. Structural optimization of thin-walled tubular structures for progressive buckling using compliant mechanism approach. SAE Int J Passeng Cars - Mech Syst. 2013;6:109-120. https://doi. org/10.4271/2013-01-0658.
  • 2. Katiyar BS, Panda SK, Saha P. Quasi-static crushing behavior of stretch formed domes of laser welded tailored blanks. Thin-Walled Struct. 2021;159: 107288. https://doi.org/10.1016/j.tws.2020.107288.
  • 3. Hashmi MSJ. Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J Mater Process Technol. 2006;179:5-10. https:// doi.org/10.1016/j.jmatprotec.2006.03.104.
  • 4. Toyoda S, Kawabata Y, Suzuki K, Sakata K, Yabumoto S, Gunji M, et al. Effects of microstructure and aging property on formability in ERW steel tubes for automobile structural parts. SAE Tech Pap. 2004. https://doi.org/10.4271/2004-01-0829.
  • 5. Yang ZZ, Tian W, Ma QR, Li YL, Li JK, Gao JZ, et al. Mechanical properties of longitudinal submerged arc welded steel pipes used for gas pipeline of offshore oil. Acta Metall Sin. 2008;21:85-93. https://doi.org/10.1016/S1006-7191(08)60024-1.
  • 6. Wang K, Liu G, Zhao J, Wang J, Yuan S. Formability and microstructure evolution for hot gas forming of laser-welded TA15 titanium alloy tubes. Mater Des. 2016;91:269-277. https://doi.org/10.1016/j.matdes.2015.11.100.
  • 7. Meshram S, Reddy M. Influence of tool tilt angle on material flow and defect generation in friction stir welding of AA2219. Def Sci J. 2018;68:512-518.
  • 8. Mishra RS, Mahoney MW, Company RS. Chapter 1. 2007. https://doi.org/10.1361/fswp2007p001.
  • 9. Lakshminarayanan AK, Balasubramanian V. Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique. J Eng Sci Technol. 2018;13:515-523.
  • 10. Sen D, Pal SK, Panda SK. Tubular structures: welding difficulty and potential of friction stir welding. In: Davim JP, editor. Welding technology. Materials forming, machining and tribology. Cham: Springer; 2021. p. 229-252. https:// doi.org/10.1007/978-3-030-63986-0_7.
  • 11. D’Urso G, Longo M, Giardini C. Mechanical and metallurgical analyses of longitudinally friction stir welded tubes: the effect of process parameters. Int J Mater Prod Technol. 2013. https://doi.org/10.1504/IJMPT.2013.056301.
  • 12. D’Urso G, Longo M, Giardini C. Characterization of friction stir welded tubes by means of tube bulge test. AIP Conf Proc. 2011;1353:1259-1264.
  • 13. Pang Q, Hu ZL, Pan X, Zuo XQ. Deformation characterization of friction-stir-welded tubes by hydraulic bulge testing. Miner Met Mater Soc. 2014;66:2137-2144.
  • 14. Chen B, Chen K, Hao W, Liang Z, Yao J, Zhang L, et al. Friction stir welding of small-dimension Al3003 and pure Cu pipes. J Mater Process Technol. 2015;223:48-57. https://doi.org/10.016/j.jmatprotec.2015.03.044.
  • 15. Tavassolimanesh A, Alavi NA. A new approach for manufacturing copper-clad aluminum bimetallic tubes by friction stir welding (FSW). J Manuf Process. 2017;30:374-384.
  • 16. Lammlein DH, Gibson BT, Delapp DR, Cox C, Strauss AM, Cook GE. The friction stir welding of small-diameter pipe: an experimental and numerical proof of concept for automation and manufacturing. Proc Inst Mech Eng Part B J Eng Manuf. 2011;226:383-398.
  • 17. Fratini L, Piacentini M. Friction Stir welding of 3D industrial parts: joint strength analysis. Eng Syst Des Anal. 2006;42517:763-770. https://doi.org/10.115/EDSA2006-95382.
  • 18. Akbari M, Asadi P. Optimization of microstructural and mechanical properties of friction stir welded A356 pipes using taguchi method. Mater Res Express. 2019. https://doi.org/10.1088/2053-1591/ab0d72.
  • 19. Shanavas S, Dhas JER. Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology. Trans Nonferrous Met Soc China (English Ed). 2017;27:2334–2344. https://doi.org/10.1016/S1003-6326(17) 60259-0.
  • 20. Verma S, Gupta M, Misra JP. Study of thermal cycle, mechanical, and metallurgical properties of friction stir welded aviation grade aluminum alloy. Proc Inst Mech Eng Part G J Aerosp Eng. 2019;233:4202–4213. https://doi.org/10.1177/0954410018.816601.
  • 21. Periyasamy YK, Perumal AV, Kunnathur PB. Influence of tool shoulder concave angle and pin profile on mechanical properties and microstructural behaviour of friction stir welded AA7075-T651 and AA6061 dissimilar joint. Trans Indian Inst Met.2019;72:1087-1109. https://doi.org/10.1007/s12666-019-01584-5.
  • 22. Lakshminarayanan AK, Malarvizhi S, Balasubramanian V. Developing friction stir welding window for AA2219 aluminium alloy. Trans Nonferrous Met Soc China (English Ed). 2011;21:2339-47.https://doi.org/10.1016/S1003-6326(11)61018-2.
  • 23. Zhang HJ, Wang M, Zhu Z, Zhang X, Yu T, Wu ZQ. Impact of shoulder concavity on non-tool-tilt friction stir welding of 5052 aluminum alloy. Int J Adv Manuf Technol. 2018;96:1497-1506. https://doi.org/10.1007/s00170-018-1707-5.
  • 24. Basak S, Prasad KS, Mehto A, Bagchi J, Ganesh YS, Mohanty S, et al. Parameter optimization and texture evolution in single point incremental sheet forming process. Proc Inst Mech Eng Part B J Eng Manuf. 2020;234:126-139. https://doi.org/10.1177/09544.05419.846001.
  • 25. Kadaganchi R, Gankidi MR, Gokhale H. Optimization of process parameters of aluminum alloy AA 2014–T6 friction stir welds by response surface methodology. Def Technol. 2015;11:209-219.
  • 26. Kah P, Rajan R, Martikainen J, Suoranta R. Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. Int J Mech Mater Eng. 2015. https://doi.org/10.1186/s40712-015-0053-8.
  • 27. Heidarzadeh A, Mironov S, Kaibyshev R, Cam G, Simar A, Gerlich A, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2020;117: 100752.
  • 28. Wang B, Lei BB, Zhu JX, Feng Q, Wang L, Wu D. EBSD study on microstructure and texture of friction stir welded AA5052-O and AA6061-T6 dissimilar joint. Mater Des. 2015;87:593-599.
  • 29. Wang XS, Hu ZL, Yuan SJ, Hua L. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application. Mater Sci Eng A. 2014;607:245-252.
  • 30. Svensson LE, Karlsson L, Larsson H, Karlsson B, Fazzini M, Karlsson J. Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082. Sci Technol Weld Join. 2000;5:285-296.
  • 31. Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ. Friction stir welding of aluminium alloys. Int Mater Rev. 2013;54:49-93.
  • 32. Yuan SJ, Hu ZL, Wang XS. Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Mater Sci Eng A.2012;558:586-591.
  • 33. Deng C, Wang H, Gong B, Li X, Lei Z. Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds. Int J Fatigue.2016;83:100-108.
  • 34. Xing L, Zhan M, Gao PF, Li M, Dong YD, Wang TY. Effect of void nucleation on microstructure and stress state in aluminum alloy tailor-welded blank. Prog Nat Sci Mater Int. 2021;31:77-85.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df85dda3-4dbd-485f-a453-d28b2a00cde0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.