PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties and characteristics of alkali treated Calotropis gigantea fiber-reinforced particle-filled epoxy composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presence of particles and fibers as reinforcement in a polymer matrix greatly enhances the mechanical properties. Agricultural residues and natural fibers are commonly used nowadays due to the fact that they easily decompose even after a longer period and they are eco-friendly in nature. f Fiber that was extracted from stem of Calotropis gigantea was selected as reinforcement in the present investigation. Initially the fiber was treated with a sodium hydroxide solution and CG fiber-epoxy composites were prepared. The properties of alkaline treated CG fiber-reinforced epoxy composites were further improved by the addition of particles such as chitosan, red mud and rice husk. Properties such as the tensile strength, flexural strength, impact toughness, hardness, water absorption, thickness swelling behaviour, specific wear rate and coefficient of friction were evaluated and compared. The XRD pattern of the chemically treated CG fiber-reinforced parrticle-filled epoxy composites was presented in the present study.
Rocznik
Strony
99--105
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Department of Mechanical Engineering, Bharath Institute of Higher Education, Research, Chennai, Tamilnadu, India
  • Department of Automobile Engineering, Easwari Engineering College, Chennai, Tamilnadu, India
  • Department of Mechanical Engineering, Bharath Institute of Higher Education and Research, Chennai, Tamilnadu, India
  • Department of Mechanical Engineering, MITS, Madanapalle, Andhra Pradesh, India
  • Department of Mechanical Engineering, SRM Institute of Science and Technology, Ramapuram campus, Chennai-89, India
Bibliografia
  • [1] Fan H., Wang L., Zhao K., Li N., Shi Z., Ge Z., Jin Z., Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites, Biomacromolecules 2010, 11(9), 2345-2351.
  • [2] Arumugam S., Kandasamy J., Md Shah A.U., Hameed Sultan M.T., Safri S.N.A., Abdul Majid M.S., Mustapha F., Investigations on the mechanical properties of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composite scaffolds for bone fracture fixation applications, Polymers 2020, 12(7), 1501.
  • [3] Uthayakumar M., Manikandan V., Rajini N., Jeyaraj P., Influence of red mud on the mechanical, damping and chemical resistance properties of banana/polyester hybrid composites, Materials and Design 2014, 64, 270-279.
  • [4] Prithivirajan R., Jayabal S., Sundaram S.K., Kumar A.P., Hybrid bio composites from agricultural residues: mechanical and thickness swelling behaviour, Cellulose 2016, 35(31.3), 27-1.
  • [5] Prithivirajan R., Jayabal S., Sundaram S.K. Kumar A.P., Hybrid bio composites from agricultural residues: mechanical and thickness swelling behavior, International Journal of ChemTech Research 2016, 09(3), 609-615.
  • [6] Balasundar P., Narayanasamy P., Senthil S., Al-Dhabi N.A., Prithivirajan R., Kumar R.S., Bhat K.S., Physico-chemical study of pistachio (Pistacia vera) nutshell particles as a bio- filler for eco-friendly composites, Materials Research Express 2019, 6(10), 105339.
  • [7] Chen R.S., Ahmad S., Gan S., Tarawneh M.A.A., High loading rice husk green composites: dimensional stability, tensile behaviour and prediction, and combustion properties, Journal of Thermoplastic Composite Materials 2020, 33(7), 882-897.
  • [8] Nourbakhsh A., Ashori A., Tabrizi A.K., Characterization and biodegradability of polypropylene composites using agricultural residues and waste fish, Composites Part B, Engineering 2014, 56, 279-283.
  • [9] Madhu P., Sanjay M.R., Senthamaraikannan P., Pradeep S., Siengchin S., Jawaid M., Kathiresan M., Effect of various chemical treatments of prosopis juliflora fibers as composite reinforcement: physicochemical, thermal, mechanical, and morphological property, Journal of Natural Fibers 2020,
  • 17(6), 833-844.
  • [10] Qiu L., Phule A.D., Han Y., Wen S., Zhang Z.X., Thermal aging, physico-mechanical, dynamic mechanical properties of chlorinated polyethylene/red mud composites, Polymer Composites 2020, 41, 4740-4749.
  • [11] Aigbodion V.S., Hassan S.B., Agunsoye J.O., Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites, Materials and Design 2012, 33, 322-327.
  • [12] Samal P., Mandava R.K., Vundavilli P.R., Dry sliding wear behaviour of Al 6082 metal matrix composites reinforced with red mud particles, SN Applied Sciences 2020, 2(2), 313.
  • [13] Sekar S., Suresh Kumar S., Vigneshwaran S., Velmurugan G., Evaluation of mechanical and water absorption behaviour of natural fiber-reinforced hybrid biocomposites, Journal of Natural Fibers 2020, 1-11.
  • [14] Nurazzi N.M., Harussani M.M., Aisyah H.A., Ilyas R.A., Norrrahim M.N.F., Khalina A., Abdullah N., Treatments of natural fiber as reinforcement in polymer composites – A short review, Functional Composites and Structures 2021, 3(2), 024002.
  • [15] Chandgude S., Salunkhe S., In state of art: Mechanical behavior of natural fiber‐based hybrid polymeric composites for application of automobile components, Polymer Composites 2021, 42(6), 2678.
  • [16] Ramakrishnan T., Senthil Kumar S., Samuel Chelladurai S.J., Gnanasekaran S., Geetha N.K., Arthanari R., Debtera B., Effect of moisture content on mechanical properties of AAM natural fiber-reinforced isophthalic polyester composites, Advances in Materials Science and Engineering 2022.
  • [17] Muthukumar C., Krishnasamy S., Thiagamani S.M.K., Nagarajan R., Siengchin S., Thermal characterization of the natural fiber‐based hybrid composites: An overview, Natural Fiber‐Reinforced Composites: Thermal Properties and Applications 2022, 1.
  • [18] Vigneshwaran S., Uthayakumar M., Arumugaprabu V., Development and sustainability of industrial waste-based red mud hybrid composites, Journal of Cleaner Production 2019, 230, 862-868.
  • [19] Chen C., Yihe Z., Wanjia H., Cheng Q., Yongfan L., Na Z., Incorporation of Xuan-paper waste residue in red mud/waste polyethylene composites, Journal of Hazardous Materials 2020, 399, 123051.
  • [20] Sharma H., Misra J.P., Singh I., Friction and wear behaviour of epoxy composites reinforced with food waste fillers, Composites Communications 2020, 22, 100436.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-df804ca3-3473-483a-bbf8-f9be47fde764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.