Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 63

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  absorpcja wody
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
This study was designed to examine the feasibility of recycling cassava effluent, sawdust, and unused paper products to enhance their utilization for beneficial purpose. Waste newspaper paste (WNP), Waste writing-paper paste (WWP), and Waste carton paper paste (WCP) were prepared and then used separately to similarly fabricate composite panels with Sawdust particle (SDP) proportioned at 0%, 25%, 50%, 75%, and 100% by weight. The binder used was cassava starch slurry prepared from the effluent. Bulk density, water absorption, thermal conductivity, specific heat capacity, thermal diffusivity, nailability, and flexural strength were determined for the developed samples. From the results obtained, the samples were found to be light-weight and their thermal insulation performance improved with increasing proportions of the SDP. Though samples containing the WCP exhibited the best satisfactory performance, it was found that all the studied samples could perform more effectively and efficiently as ceilings compared to some of those reported in the literature. From scientific-economic viewpoint, valorizing the above-mentioned wastes as described in this paper could help to protect the environment and also yield value-added insulation ceilings for enhancement of sustainable building construction especially in tropical areas.
PL
Celem pracy było określenie możliwości recyklingu ścieków z manioku, trocin i odpadowych materiałów papierniczych w celu ich szerszego wykorzystania. Nitki z makulatury gazetowej (WNP), nitki z makulatury z papieru do pisania (WWP) i nitki z makulatury z kartonu (WCP) zostały przygotowane, a następnie użyte osobno do wytworzenia paneli kompozytowych z dodatkiem trocin (SDP) przy udziale masowym 0%, 25%, 50 %, 75% i 100%. Zastosowanym spoiwem była przygotowana z odcieku zawiesina skrobi z manioku. Dla przygotowanych próbek określono gęstość nasypową, nasiąkliwość, przewodność cieplną, ciepło właściwe, dyfuzyjność cieplną, zdolność do wbijania gwoździ i wytrzymałość na zginanie. Na podstawie uzyskanych wyników stwierdzono, że próbki miały małą gęstość objętościową, a ich właściwości termoizolacyjne poprawiały się wraz ze wzrostem udziału trocin (SDP). Chociaż próbki zawierające WCP wykazywały najlepsze właściwości, stwierdzono, że z wszystkich badanych próbek można wytworzyć sufity o lepszych właściwościach w porównaniu z podobnymi opisanymi w literaturze. Z naukowo-ekonomicznego punktu widzenia zastosowanie wyżej wymienionych odpadów, jak opisano w tym artykule, może pomóc w ochronie środowiska, a także w uzyskaniu bardziej ciepłochronnych stropów, a co za tym idzie przyczyni się do rozwoju bardziej zrównoważonego budownictwa, zwłaszcza w obszarach tropikalnych.
EN
Purpose: Attributable to the depletion of raw materials and for sustainability purposes in construction works. Therefore, this study looked into the effects of nano blast furnace slag (BFS) on the microstructure, mechanical properties, and durability of mortar. BFS was substituted for cement at various weight percentages of 0, 1, 1.5, 3, 5, and 7%. Design/methodology/approach: A suspension of water and Nano blast furnace slag was made using ultrasonic mixers to prepare the samples. The suspension was combined with cement and sand using 1 cement, 0.5 water, and 2.75 sand in the mixture to make cement mortar. The mixture was then shaped, left in the mould for 24 hours, and then allowed to cure for 7, 14, 28, 60, and 91 days. SEM was used to investigate the microstructure before and after cement replacement. The mechanical characteristics were evaluated by testing the compressive strength and the surface hardness. While the durability was assessed using the water absorption ratios. Findings: The results revealed that increasing the BFS in the mortar improved mechanical characteristics and durability by up to 3% of BFS. Replacing Nano-blast furnace slag for a portion of the cement is a proposed solution to address the problems of environmental pollution and resource consumption caused by cement production. Research limitations/implications: Another sustainable material needs to be used for additional investigation. We may evaluate more properties and use different weight percentages. Practical implications: Each year, a significant amount of slag is produced as a result of the iron industry, endangering the environment. There have been numerous initiatives to reduce slag’s negative environmental consequences. Using slag to replace some of the cement is one of the options to eliminate this byproduct and reduce excessive cement use. Originality/value: This study investigates the possibility of using a blast furnace blast within the Nanoscale to replace some of the cement used in the construction due to the positive impact on the environment to get rid of industrial byproducts and decrease the use of cement.
EN
Purpose: The upper part of the prosthesis is called a socket, which contacts the amputated part. While wearing the prosthesis, there are several problems that the patient may suffer from, such as shear force between the socket and amputated part, pressure on the bony prominences, sweating, and bacteria generation, all leading to skin problems and a bad smell. It makes the patient refuse to wear the prosthesis because it is uncomfortable. Therefore, the aim of this study was comfortable lining from silicone rubber which cross-links at room temperature, with properties corresponding to the needs of this application, such as stress distribution, moisture absorption, and antibacterial. Design/methodology/approach: In the current work, silicone rubber was selected with the addition of nano-fillers (ZnO, Mg(OH)2, and Chitosan). Mechanical and physical properties were studied (tensile strength, tear strength, hardness, water absorption, porosity, and antibacterial). Findings: Chitosan showed the highest effect on the mechanical properties of silicon, as it achieved the highest value of tensile strength of 2.2 MPa elongation of 572%, tear strength 13.9 kN/m, and shore A hardness of 33.3. While the highest value of the modulus, 0.636 MPa was achieved by adding ZnO. The results also showed an increase in the water absorption and the porosity, which were the highest values at 1.6 % and 0.24%, respectively with the addition of Mg(OH)2. The samples showed a clear resistance to preventing the microorganism’s growth. Research limitations/implications: Manufactured linings require additional improvement in mechanical properties by mixing more than one type of additives mentioned in the research. Thus, physical and biological properties can be obtained simultaneously with mechanical properties. Practical implications: The above results qualify the silicone rubber composites for use as a socket liner due to their flexibility and ability to absorb water in addition to their resistance and prevent the growth of fungi and bacteria. Originality/value: The method of preparation and properties of the lining material and additives qualify it for such applications as physical and biological properties.
EN
Purpose: This paper aims to prepare depolymerized polyethylene terephthalate (DPET) powder from recycled plastic water bottles. Adding this DPET powder to the cement mortar was also studied. Design/methodology/approach: The adopted PET depolymerization process includes the usage of both ethylene glycol (EG) as solvent and nano-MgO as a catalyst. A bubble column reactor was designed for this process. Five different mortar groups were made; each has different DPET content of 0%, 1%, 3%, 6% and 9% as a sand replacement. The flexural strength testand the water absorption measurement are done after two curing periods: 7 and 28 days. Findings: The research finding demonstrated that the flexural strength of mortar was reduced by increasing the DPET powder percentage and the maximum dropping was 15% when 9% of DPET was added. The ability of the mortar to absorb the water was reduced by 14.5% when DPET powder was 9%. The mortar microstructure is featured with fewer cavities and porosity. Research limitations/implications: This work’s employed bubble column technique is limited only to the laboratory environment and needs to be scaled up within industrial mass production. For future research, it is suggested to decrease depolymerization time by using smaller pieces of plastic water bottle waste and trying other types of nanocatalyst. Practical implications: The modified mortar can be utilized in areas where moisture, rainfalls, and sanitation systems exist. Originality/value: The article claims that depolymerized waste PET improves chemical process efficiency by lowering reaction time and improving mass and heat transfer rates. Besides, this approach saves money. It is found out that the depolymerized plastic waste is much more functional due to its high cohesion capability than being used as small PET pieces.
EN
Purpose: Diatomite from a deposit in Jawornik Ruski (Poland) has been selected as the material for study. The paper aimeds to show the possibility of using diatomite from the Carpathian Foothills as a sorbent of petroleum substances. Design/methodology/approach: Diatomite in the delivery condition (DC) and diatomite after calcination were used for this study. The material was calcined at 600, 650, 750, 850 and 1000°C. The diatomaceous earth was then granulated. The morphology of diatomite was observed using SEM. Particle size distribution was determined by Laser Particle Analyzer, chemical composition was determined by XRF, and mineralogical composition by XRD. Specific surface area, pore volume and pore size were determined. Thermal analysis (TG, DTA) was carried out. Absorption capacity tests were performed and the effect of diatomite addition on water absorption of concrete samples was determined. Findings: Within the framework of the study, it was shown that diatomite from the Jawornik deposit could be successfully used as a sorbent for petroleum substances. The absorption capacity of calcined at 1000°C diatomaceous earth was 77%. The obtained result exceeds the effectiveness of previously used absorbents, for which the sorption level is 60-70%. This allows commercial use of diatomite from deposits in Poland. In addition, water absorption tests have shown that diatomaceous earth can successfully replace cement used in concrete productione. The most favourablee effect on the reduction of water absorption is the addition of diatomite in the amount of 10%. Practical implications: The properties of diatomaceous earth from the Jawornik Ruski deposit indicate its high potential for use in the synthesis of geopolymers, which is important not only from an economic but also from an ecological point of view. Originality/value: The novelty of this work is the demonstration of the possibility of using diatomite as a sorbent of petroleum substances with high efficiency, exceeding the previously used sorbents.
EN
The presence of particles and fibers as reinforcement in a polymer matrix greatly enhances the mechanical properties. Agricultural residues and natural fibers are commonly used nowadays due to the fact that they easily decompose even after a longer period and they are eco-friendly in nature. f Fiber that was extracted from stem of Calotropis gigantea was selected as reinforcement in the present investigation. Initially the fiber was treated with a sodium hydroxide solution and CG fiber-epoxy composites were prepared. The properties of alkaline treated CG fiber-reinforced epoxy composites were further improved by the addition of particles such as chitosan, red mud and rice husk. Properties such as the tensile strength, flexural strength, impact toughness, hardness, water absorption, thickness swelling behaviour, specific wear rate and coefficient of friction were evaluated and compared. The XRD pattern of the chemically treated CG fiber-reinforced parrticle-filled epoxy composites was presented in the present study.
EN
This article deals with the basic principles of developing engobe compositions for facing and clinker ceramic bricks. The microstructure features of ceramic bricks have been studied, which must be considered when choosing the engobe composition and engobe products’ technology. The expediency of using alkaline and substandard kaolins as the main raw material, which improves the conditions for sintering ceramic coatings by applying the single annealing technology of construction ceramics, has been studied. Due to its higher annealing reactivity, compared to traditional clay materials, the experimental raw material in the engobe composition improves the adhesion of the coating to the ceramic base and increases the strength of the decorative and protective layer.
EN
In this investigation, the confinement effects of micro synthetic fibers on lightweight foamed concrete (LFC) were examined. The parameters evaluated were porosity, water absorption, shrinkage, compressive strength, flexural strength and tensile strength. Three densities were cast which were 600 kg/m3, 1100 kg/m3, and 1600 kg/m3. Besides, the number of layers (1 to 3 layers) of micro synthetic fibers was also being examined. Based on the result obtained, the porosity improved by 8.0% to 16.3%, 13.8% to 25.6%, and 9.3% to 24.5% for the LFC with densities of 600 kg/m3, 1100 kg/m3, and 1600 kg/m3 confined with 1 layer, 2 layers, and 3 layers of micro synthetic fibers, respectively. Besides, for the water absorption test, the enhancements were 6.9% to 15.6%, 20.0 to 27.1%, and 12.2 to 29.6% for the respective densities and number of layers of micro synthetic fibers employed, while the drying shrinkage improved by 48.5% to 76.8%, 57.4% to 72.1%, and 43.2 % to 68.2% for the respective densities and number of layers of micro synthetic fibers employed. For the strength properties, a confinement with 3 layers of micro synthetic fibers showed significant results, where enhancements of 153% (600 kg/m3), 97% (1100 kg/m3), and 102% (1600 kg/m3) were obtained for the compression strength; 372% (600 kg/m3), 258% (1100 kg/m3), and 332% (1600 kg/m3) for the bending strength; and 507% (600 kg/m3), 343% (1100 kg/m3), and 332% (1600 kg/m3) for the splitting tensile strength, respectively, compared to the control LFC.
EN
Natural seed fiber reinforced composite materials are replacing many conventional ones because of their excellent properties, less weight, easy availability, etc. Composite materials are used in many areas because of their superior features. Mechanical property is one of the vital parameters for choosing the material. The current investigation has revealed an importance of recently well-known Wrightia tinctoria nano seed fibers (WTNSFs), which are extracted physically. Wrightia tinctoria nano seed fiber reinforced composite was prepared with the epoxy resin by hand layup method. Epoxy resin is easy to handle and available at low cost. Mechanical tests are conducted reinforced composites of plain epoxy and WTNSFs to obtain strength properties like tensile, flexural, impact. Water absorption tests also performed on composites. Here, the developed composites are easy to handle, offered economically, and used primarily in marine applications due to less water absorption and good wax content. A comprehensive description of different tests and the properties of WTNSFs are studied and compared with the other existing natural fibers. This work showed that 35% combination of WTNSFs reinforced epoxy matrix offers enhanced mechanical properties with minimum water absorption compared with plain epoxy composites.
EN
Warp-knitted spacer fabrics are generally used for sportswear, functional clothing, protective clothing, and other applications. This article studied the heat and mass transfer properties of polyester warp-knitted spacer fabrics from low thickness (2 mm) to high thickness (20 mm), from low mass (247.34 g/m2) to high mass (1,585.9 g/m2), and surface structure in plain or mesh construction. Water vapor permeability, air permeability, water absorption, and thermal insulation property were conducted to evaluate the spacer fabrics. The results revealed that with increasing volume density the water vapor permeability of spacer fabrics decreased, but the water absorption ratio increased. The water vapor permeability of fabrics increased when thickness decreased and volume density increased. It was further found that spacer fabrics with mesh worn nearby the skin and plain structure worn far from the skin could facilitate water vapor and air transmission. The difference of 8.82% for water vapor permeability and 14.19% for air permeability were found between testing mesh side up and down for the spacers (2.56 and 3.37 mm), respectively. Thermal insulation ratio was highly and significantly correlated with heat transfer coefficient at −0.958 and with thickness at 0.917. Thermal insulation ratio is highly and significantly correlated with air permeability at 0.941.
EN
Steam-cured concrete with high early strength has been widely applied in high-speed railway. However, heat damage caused by the steam curing process brings adverse effects on the pore structure and durability of steam-cured concrete. It has been found that phase change materials (PCMs) help improve the durability of cement-based materials. Therefore, the influences of two PCMs on the strength, water absorption, and microstructure of steam-cured mortar are discussed in this study. Two PCMs used include pure paraffin and a composite phase change material composed of porous diatomite and paraffin (D/P). The results show that the addition of appropriate PCMs does not significantly reduce the strength of steam-cured mortar. The addition of a small amount of PCMs shows little influence on the pore structure of steam-cured mortar but effective in improving the water-penetration resistance. This is partially attributed to the improvement of hydrophobic characteristics in the pores, resulting from the adhesion of hydrophobic PCMs on the pores during the steam curing. Compared with specimens containing pure paraffin, the pore structure of specimens containing D/P is refined, resulting in higher compressive strength. This may be due to the uniform distribution of small particles D/P in the specimen and the pozzolanic reaction of diatomite in D/P. The use of suitable phase change materials will be helpful to improve the durability of steam-cured concrete.
EN
This work deals with the study of polymers, and, in particular, polyethylene; its production, types, properties, and usage. The experimental part evaluates the changes of properties of the polyethylene film to be reused under various exposure conditions and selection of the most suitable medium for its application. The film made of low-density polyethylene (LD-PE) was influenced by aggressive media with different pH, specifically Savo for the disinfection, Savo as a Saponate for dish washing and Coca-Cola. On LD-PE films the water absorption and melting temperature evaluation tests were performed. Carried out tests show that the most aggressive medium for LD-PE film from used media is Coca-Cola. The most effective application of LD-PE film like wrapping on container transported is the Savo used as a Saponate for dish washing.
EN
In recent years, the increased interest in the design and fabrication of lightweight polymer composites with various combinations and stoichiometry is due to their enhancement of electrical, mechanical, thermal, and biological properties compared to the properties of conventional materials. With that view, the present study deals with the effects of low density polyethylene composites (LDPE) reinforced with epoxy resin, glass fiber, carbon fiber, and Kevlar towards the mechanical, thermal, and water absorption properties. The mechanical studies showed that the LDPE composite reinforced carbon fiber has the best tensile properties compared to other composites and this can be mostly due to the proper bonding and associated interaction between the polymeric matrix and the bidirectional layer of the fibers. Also, the carbon fiber reinforced composite has superior properties of impart energy compared to the other composites and the non-reinforced ones and this is attributed to the crystalline nature of carbon fiber. Further studies of the thermal properties indicated that the retention of thermal stability for all the fiber-reinforced polymer composites, while the water absorption revealed a considerable increase in the weight of Kevlar fiber-reinforced composite. From the overall analysis, the enhanced properties of LDPE matrix reinforced fibers are linked to the morphological changes that occurred and are directly affected by the nature of the fiber.
PL
Zwiększone w ostatnich latach zainteresowanie projektowaniem i wytwarzaniem lekkich kompozytów polimerowych wynika z ich lepszych właściwości elektrycznych, mechanicznych, termicznych i biologicznych w porównaniu z cechami materiałów konwencjonalnych. Zbadano wpływ rodzaju wzmocnienia (włókno szklane, włókno węglowe i włókno Kevlar) na właściwości mechaniczne, termiczne i absorpcję wody laminatowych kompozytów polietylenu małej gęstości (LDPE) z żywicą epoksydową. Stwierdzono, że kompozyt LDPE z włóknem węglowym, w porównaniu z innymi kompozytami, wykazuje najlepszą wytrzymałość na rozciąganie, co może wynikać głównie z interakcji polimerowej osnowy z dwukierunkową warstwą włókien. Ponadto kompozyt ten ma większą zdolność przenoszenia energii niż pozostałe badane kompozyty, co można przypisać krystalicznej budowie włókna węglowego. Badania właściwości termicznych wykazały stabilność termiczną wszystkich kompozytów polimerowych wzmocnionych włóknami oraz znaczną absorpcję wody kompozytu wzmocnionego włóknem Kevlar.
14
EN
Current focus is on polymer and metal matrix composites for their increased mechanical properties. The strength of the composites is further enhanced by incorporating different types of additives which includes fillers, flame retardants, silanes, coupling agents and so on. One such additives is egg shell powder which influences the strength of composites and thus, gains the attention of researchers for its incorporation in composite fabrication. The work is in progress with respect to utilizing waste egg shell in composite fabrication, which not only finds solution for the waste disposal, but also enhances the strength of composites manufactured. This work is the compilation of work done by different researchers with egg shell in composites, so that the need of its utilization in the manufacture of composites will be stronger.
EN
The influence of addition of 10, 20, 30, 40 and 50 wt % sugar palm particles (SPP) on the water absorption properties of thermoplastic sago starch biopolymer composite films was investigated. The fillers were mechanically stirred with thermoplastic sagostarch mixtures for 30 minutes at 80 °C. The prepared films were then characterized for water absorption and water solubility. The SPP successfully reduce water absorption and thus increase barrier properties of thermoplastic sago starch biopolymer composite against water penetration, resulting in a more durable biocomposite films.
PL
Zbadano wpływ dodatku 10, 20, 30, 40 i 50% mas. cząstek włókien palmy cukrowej (SPP) na absorpcję wody termoplastycznych folii z biopolimeru skrobiowego sago. Cząstki napełniacza rozprowadzano mechanicznie w mieszaninie termoplastycznej skrobi sago przez 30 minut w 80 °C. Wyznaczano absorpcję wody i rozpuszczalność w wodzie otrzymanych folii. Cząstki SPP skutecznie zmniejszają wchłanianie wody, zwiększając tym samym właściwości barierowe termoplastycznego kompozytu skrobi sago względem wody, co umożliwia uzyskanie trwalszych folii biokompozytowych.
EN
Studies on the effect of sago starch and plasticizer concentrations on the tensile and tearing properties of the produced starch films were carried out using universal testing machine. The results showed that both sago starch and plasticizer contents significantly affected the mechanical properties of starch films. With increasing the starch concentration, an increase in tensile strength was observed. This was accompanied by radically reduced tensile strain and increased tearing strength. On the contrary, when increasing the plasticizer concentration, a reduction in tensile and tearing strength was observed, as well as an increment in tensile strain. The results of repeated soaking and drying tests made on sago starch films showed that the films with high plasticizer and low starch content exhibited lower mass loss compared to those containing lower plasticizer and higher starch concentration. Increasing the number of soaking and drying cycles reduced starch dissolution and it was probably related to retrogradation process inside the film. In a nutshell, the study provided preliminary information to assess the possible application fields of sago starch films.
PL
Z zastosowaniem uniwersalnej maszyny testującej zbadano zależność wytrzymałości na rozciąganie i rozdarcie wytworzonych błon skrobiowych od zawartości w nich skrobi sago i plastyfikatora. Stwierdzono, że udział zarówno skrobi, jak i plastyfikatora (mieszanina sorbitolu i glicerolu 1 : 1) wpływają wyraźnie na właściwości mechaniczne otrzymanych błon. Zwiększenie zawartości skrobi powodowało wzrost wytrzymałości na rozciąganie połączone z drastycznym zmniejszeniem wartości naprężenia. Ponadto zwiększyła się wytrzymałość na rozerwanie. Większa zawartość plastyfikatora w błonie skrobiowej, w przeciwieństwie do udziału skrobi sago, prowadziła do zmniejszenia wytrzymałości na rozciąganie przy zwiększeniu wartości naprężenia, a także do zmniejszenia wytrzymałości na rozerwanie. Wyniki testu cyklicznego moczenia i suszenia błon skrobiowych sago wykazały, że błony z dużą zawartością plastyfikatora i małym udziałem skrobi charakteryzowały się małym ubytkiem masy, w przeciwieństwie do błon z dużą zawartością skrobi i małym udziałem plastyfikatora. Zwiększanie liczby cykli moczenia i suszenia wpływało na ograniczenie procesu rozpuszczania skrobi wwodzie, co można tłumaczyć przebiegającą retrogradacją cząsteczek skrobiowych sago. Przeprowadzone badania mogą być przydatne do określenia obszarów potencjalnych zastosowań błon wytworzonych ze skrobi sago.
EN
Evaluation of moisture absorption in foodstuffs such as black chickpea is an important stage for skinning and cropping practices. Water uptake process of black chickpea was discussed through normal soaking in four temperature levels of 20, 35, 50 and 65 °C for 18 hours, and then the hydration kinetics was predicted by Peleg’s model and finite difference strategy. Model results showed that with increasing soaking temperature from 20 to 65 °C, Peleg’s rate and Peleg’s capacity constant reduced from 13.368×10-2 to 5.664×10-2 and 9.231×10-3 to 9.138×10-3, respectively. Based on key results, a rise in the medium temperature caused an increase in the diffusion coefficient from 5.24×10-10 m2/s to 4.36×10-9 m2/s, as well. Modelling of moisture absorption of black chickpea was also performed employing finite difference strategy. Comparing the experimental results with those obtained from the analytical solution of the theoretical models revealed a good agreement between predicted and experimental data. Peleg’s model and finite difference technique revealed their predictive function the best at the temperature of 65 °C.
EN
The compressive strength and water absorption of cement mortars with different water-binder ratio (0.35, 0.45 and 0.55) and fly ash content (0, 10%, 20% and 30%) under water immersion were investigated, and the correlation between them was further analyzed. The internal microstructure and phase composition of mortar was studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that the inside of mortar mixed with fly ash displayed the loose and porous microstructure. Therefore, the incorporation of fly ash reduced the compressive strength of mortar, especially the early strength, and the strength decreased with the increase of fly ash content, and the water absorption of mortar also increased. There was a linear correlation between the compressive strength and water absorption of mortar with the equation: fc = -3.838β + 62.332, where fc and β represented the compressive strength and water absorption, respectively. Therefore, when the water absorption of mortar immersed in water was measured, its corresponding compressive strength could be preliminarily inferred through this equation, which was of great significance for detecting and identifying the stability and safety of hydraulic structures.
EN
This work presents the results of optimization of the compositions area of radio-absorbing ceramic. As a result of laboratory samples test, dependences “composition – property” was obtained, the choice of the most technologically advanced composition area and sintering temperature for manufacturing the radio-absorbing ceramic was substantiated. The optimal composition of the Sr- titanate ceramics is characterized by the following properties: water absorption (W = 1,3 %), dielectric permeability (ε = 115), density (ρ =4,35·103 kg/m3).
PL
W pracy przedstawiono wyniki optymalizacji powierzchni kompozytowej materiałów ceramicznych pochłaniających fale radiowe. W wyniku badań laboratoryjnych próbek uzyskano zależności "kompozyt - właściwość", uzasadniono wybór najbardziej technologicznie zaawansowanej powierzchni kompozytowej oraz temperatury spiekania dla wytwarzania materiału ceramicznego pochłaniającego fale radiowe. Optymalny ceramiczny kompozyt strontowo-tytanowy charakteryzuje się następującymi właściwościami: absorpcja wody (W = 1,3 %), przenikalność dielektryczna (ε = 115), gęstość (ρ =4,35·103 kg/m3).
PL
W artykule przedstawiono przykłady praktycznego użycia geokompozytów sorbujących wodę w zastosowaniach inżynieryjnych jako elementu wspomagającego rozwój biotechnicznych pokryć budowli. Omówiono ich budowę oraz zasadę działania, miejsca instalacji, a także współpracę z innymi geosyntetykami.
EN
The paper presents examples of practical use of water absorbing geocomposites in engineering applications as a supporting element of vegetative slope covers on earth structures. The author discuss their structure and operating principles, the places for implementation as well as their combination with other geosynthetic products.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.