PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fatigue Behavior of MIG-Welded 7N01-T4 Aluminum Alloy with Different V-Groove Angles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
7N01-T4 aluminum alloy was welded by metal inert gas welding and the influence of V-groove angle on joint fatigue properties was investigated. The results indicate that the volume of fusion zone (FZ) and the grains in FZ become small when the groove angle decreases to 50° from 70°. Most pores distribute at the FZ edge and fewer pores are formed in the small angle joint. The fatigue crack mainly initiates at the transition region between the weld passes due to the pore concentration. The small angle contributes to increasing joint fatigue properties, especially at the low stress level. The fatigue strength of 50° joint is 103.06 MPa which is 15.3% higher than that of 70° joint.
Twórcy
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, No. 37 Daoyi South Avenue, Daoyi Development District, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, No. 37 Daoyi South Avenue, Daoyi Development District, Shenyang 110136, China
autor
  • Shenyang Aerospace University, School of Aerospace Engineering, No. 37 Daoyi South Avenue, Daoyi Development District, Shenyang 110136, China
autor
  • CRRC Sifang Co., Ltd, Qingdao 266111, China
autor
  • Hebei University of Science and Technology, School of Material Science and Technology, Shijiazhuang 050018, China
Bibliografia
  • [1] S. Niu, S. Ji, J. Liu, X. Meng, J. Mater. Process. Technol. 267, 141-151 (2019).
  • [2] Z. Ma, Y. Jin, S. Ji, X. Meng, L. Ma, Q. Li, J. Mater. Sci. Technol. 35 (1), 94-99 (2019).
  • [3] H. J. Liu, H. Fujii, M. Maeda, K. Nogi, J. Mater. Process. Technol. 142 (3), 692-696 (2003).
  • [4] Y. Huang, X. Meng, Y. Xie, L. Wan, Z. Lv, J. Cao, J. Feng, Compos. Part A Appl. Sci. Manuf. 105, 235-257 (2018).
  • [5] V. C. Sinha, S. Kundu, S. Chatterjee, Arch. Metall. Mater. 62 (3), 1819-1825 (2017).
  • [6] W. F. Xu, Y. X. Luo, M. W. Fu, Mater. Charact. 138, 48-55 (2018).
  • [7] Y. Huang, X. Meng, Y. Zhang, J. Cao, J. Feng, J. Mater. Process. Technol. 250, 313-319 (2017).
  • [8] W. Piekarska, M. Kubiak, Z. Saternus, K. Rek, Arch. Metall. Mater. 58 (4), 1237-1242 (2013).
  • [9] M. Kallek, S. Ataoglu, Y. Yagci, H. N. Bozkurt, A. N. Gulluoglu, Arch. Metall. Mater. 57 (2), 525-537 (2012).
  • [10] M. Rózański, M. Morawiec, A. Grajcar, S. Stano, Arch. Metall. Mater. 61 (4), 1999-2008 (2016).
  • [11] S. Różowicz, S. Tofil, A. Zrak, Arch. Metall. Mater. 61 (2), 1157-1162 (2016).
  • [12] J. S. Shih, Y. F. Tzeng, J. B. Yang, Mater. Des. 32 (3), 1253-1261 (2011).
  • [13] W. Ni, S. Yang, J. Jia, J. Bai, Y. Lin., Rare Met. Mater. Eng. 45(11), 2774-2778 (2016).
  • [14] V. Gaur, M. Enoki, T. Okada, S. Yomogida, Int. J. Fatigue. 107, 119-129 (2018).
  • [15] P. K. Ghosh, S. R. Gupta, P. C. Gupta, R. Rathi, J. Mater. Sci. 26(22), 6161-6170 (1991).
  • [16] Y. Ye, J. Cai, X. Jiang, D. Dai, D. Deng, Adv. Eng. Softw. 86, 39-48 (2015).
  • [17] J. Chen, C. Schwenk, C. S. Wu, M. Rethmeier, Int. J. Heat Mass Transf. 55, 102-111 (2012).
  • [18] D. W. Cho, S. J. Na, M. H. Cho, J. S. Lee, J. Mater. Process. Technol. 213 (9), 1640-1652 (2013).
  • [19] A. Giri, M. M. Mahapatra, K. Sharma, P. K. Singh, Int. J. Steel Struct. 17 (1), 65-75 (2017).
  • [20] C. E. Cross, Grong, M. Mousavi, Scr. Mater. 40 (10), 1139-1144 (1999).
  • [21] T. Koseki, H. Inoue, Y. Fukuda, A. Nogami, Sci. Technol. Adv. Mater. 4 (2), 183-195 (2003).
  • [22] Y. Liu, W. Wang, J. Xie, S. Sun, L. Wang, Y. Qian, Y. Meng, Y. Wei, Mater. Sci. Eng. A. 549, 7-13 (2012).
  • [23] F. Lefebvre, I. Sinclair, Mater. Sci. Eng. A. 407 (1-2), 265-272 (2005).
  • [24] J. L. Huang, N. Warnken, J. C. Gebelin, M. Strangwood, R. C. Reed, Acta Mater. 60 (6-7), 3215-3225 (2012).
  • [25] S. Li, H. Dong, L. Shi, P. Li, F. Ye, Corros. Sci. 123, 243-255 (2017).
  • [26] M. Nicolas, A. Deschamps, Acta Mater. 51 (20), 6077-6094 (2003).
  • [27] W. Sylwestrowicz, E. Hall, Proc. Phys. Soc. Sect. B. 64 (9), 495-502 (1951).
  • [28] Z. Yan, X. Liu, H. Fang, Int. J. Adv. Manuf. Technol. 91 (9-12), 3025-3031 (2017).
  • [29] S. Liu, J. Li, G. Mi, C. Wang, X. Hu, Int. J. Adv. Manuf. Technol. 87 (1-4), 1135-1144 (2016).
  • [30] Q. Dai, Z. Liang, G. Chen, L. Meng, Q. Shi, Mater. Sci. Eng. A. 580, 184-190 (2013).
  • [31] C. He, Y. Liu, J. Dong, Q. Wang, D. Wagner, C. Bathias, Int. J. Fatigue. 82, 379-386 (2016).
  • [32] S. E. Stanzl-Tschegg, O. Plasser, E. K. Tschegg, A. K. Vasudevan, Int. J. Fatigue. 21, 18-22 (1999).
  • [33] Z. Ma, Y. Wang, S. Ji, L. Xiong, J. Manuf. Process. 36, 238-247.
  • [34] J. F. Guo, H. C. Chen, C. N. Sun, G. Bi, Z. Sun, J. Wei, Mater. Des. 56, 185-192 (2014).
Uwagi
EN
Qinghua Li and Zhongwei Ma contributed equally to this work.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dca26c84-464e-44ea-b7e9-132ead0f5be2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.