PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The concept of a mobile system for detection fire phenomena based on convolutional neural networks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The research problem taken up in the article is the development of an efficient, mobile and effective fire detection algorithm based on the architecture of artificial neural networks. Both the process of training and inference of CNNs is burdened with a high demand for computing power. In the case of desktop devices, equipped with powerful processors and graphics cards, this process is largely facilitated and does not cause great difficulties. Another situation, however, is the desire to create a detection algorithm that in its performance will not differ from the stationary version, nevertheless its additional feature will be mobility. The desire to supervise vast areas of critical infrastructure using an unmanned aerial vehicle, imposes peculiar hardware limitations, which mainly include weight and size. The creation of an algorithm that will carry out real-time fire detection under the above-mentioned assumptions will therefore be a task that will require the optimization of a trained neural network model, into a format supported by popular mobile systems such as the Raspberry Pi.
Twórcy
  • Military University of Technology, Faculty of Automation, Electronics, Electrical Engineering and Space Technologies, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] https://www.gov.pl/web/kgpsp/interwencje-podsumowanie-2022, dostęp: 25.09.2023 r.
  • [2] A. Gaur et al., "Fire Sensing Technologies: A Review," in IEEE Sensors Journal, vol. 19, no. 9, pp. 3191-3202, 1 May1, 2019, doi: 10.1109/JSEN.2019.2894665
  • [3] RS Allison i in., „Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring”, tom. 16, (8), 2016
  • [4] T. Wu et al., "A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development," in IEEE/CAA Journal of Automatica Sinica, May 2023, doi: 10.1109/JAS.2023.123618
  • [5] P. Nagababu, K. Dhakshitha, G. Chandrika and U. R. Chowdary, "Automated Fire Detection System Using Image Surveillance System (ISS) and Convolutional Neural Networks (CNN)," 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2023
  • [6] A. Jellali, I. B. Fredj and K. Ouni, "Data Augmentation for Convolutional Neural Network DeepFake Image Detection," 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET), Hammamet, Tunisia
  • [7] Jakubowski, K., Paś J., Duer, S., Bugaj, J.: Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings. Energies. 2021; 14, 7893. https://doi.org/10.3390/en14237893.
  • [8] C. Yuan, Y. M. Zhang, and Z. X. Liu, “A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques,” Canadian Journal of Forest Research, vol. 45, no. 7, 2015, pp. 783–792.
  • [9] F. Yizhou, M. Hongbing. Video-based Forest fire smoke recognition, Journal of Tsinghua University. 2015, 55(2): 243-250, 256.
  • [10] Paś J., Exploitation of electronic security systems, Military University of Technology, Warsaw 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-dc6a6c43-2a39-49c4-8844-e7ce7f697556
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.