PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algae as an alternative to the methods of production and use of conventional biomass (review article)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Algae have been present in the water treatments technologies, food for animals makingprocesses or even for diet supplements production for many years now. Recent years, however, have brought a number of ideas and discoveries for a wider use of these autotrophs. Their use is related to the broadly understood environmental protection and many threads of combating climate change. Currently, one of the most common ways of using algae is the production of liquid biofuels of the 3rd and 4th generation and unconventional biomass generation. Biofuels obtained from algae, in addition to lower amounts of harmful substances contained in them, are often characterized by a negative emission balance. It is related to the fact that those organisms, being in an exponential growth phase, assimilate the carbon dioxideneeded for photosynthesis. The production of energy substances from algae and microalgae in the teeth of draining fossil fuel deposits and their destructive impact on the environment. That sooth combined with the ease and low cost of culture, condition they become a real alternative to existing energy sources. Unique properties of algae linked with the fact that they are among the best, known biological energy converters opens the way to a number of opportunities to use them in other economic sectors. Certainly, the technological revolution in the energy market in addition to the requirement to create the most efficient reactors, in-depth research on the properties of fuels and the producers themselves still needs to be regulated by law. Algae can be grown in polluted waters, and the energy raw materials produced from them are able to reach (without emission logistic costs) a negative balance of CO2 emissions. This phenomenon and the fact that apart from fuels and biogas, they can be used for purposes such as carbon sequestration, creating energy biomass, medicines and dietary supplements, as well as food for animals, for example, the most reasonable choice would be to create advanced regulations regarding the closed- circuit policy in the energy sector, based precisely on biologically active organisms. This work focuses on gathering and presenting basic information regarding current technologies related to algae, their potential uses in the energy sector, and the long-term prospects for their development. It also takes into account the issues associated with the holistic nature of energy harvesting methods such as the one discussed.
Słowa kluczowe
Rocznik
Strony
52--69
Opis fizyczny
Bibliogr. 76 poz., rys.
Twórcy
autor
  • Student, Biotechnology, Faculty of Chemistry, Warsaw University of Technology
Bibliografia
  • 1. Alam F., Mobin S., Chowdhury H., Third generation biofuel from algae, ”Procedia Engineering” 2015, 105(2015), s. 763-768.
  • 2. Amini E., Babaei A., Mehrnia M., Shayegan J., Municipal wastewater treatment by semicontinuous and membrane algal bacterial photo-bioreactors, ”Journal of Water Process Engineering” 2020, 36(2020).
  • 3. Bhuiya M., Rasul M., Khan M., Ashwath N., Azad A., Prospects of 2nd generation biodiesel as a sustainable fuel Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies, ”Renewable and Sustainable Energy Reviews” 2016, 55(2016).
  • 4. Biernat K., Perspektywy rozwoju technologii biopaliwowych w świecie do 2050 roku, „CHEMIK” 2012, 66(11), s. 1178-1189.
  • 5. Brennan L., Owende P., Biofuels from Microalgae-A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products, ”Renewable & Sustainable Energy Reviews” 2010, 14(2010), s. 557-577.
  • 6. Chisti Y., Fundamentals and Advances in Energy, Food, Feed, Fertilizer, and Bioactive Compounds, ”Algae Biotechnology” 2020, s. 3-23.
  • 7. Chowdhury R., Ghosh S., Debnath B., Manna D., Indian Agro-wastes for 2G Biorefineries: Strategic Decision on Conversion Processes, ”Green Energy and Technology” (2018).
  • 8. Clauser N.M., Felissia F.E., Area M.C., Vallejos M.E, Integrating the new age of bioeconomy and Industry 4.0 into biorefinery process design,”BioResources” 2022, 17(3), s. 5510-5531.
  • 9. Climate Change 2007:Impacts, Adaptation and Vulnerability.
  • 10. Dammer L., Carus M., “The Circular Bioeconomy”— concepts, opportunities and limitations, ”Industrial Biotechnology” 2018, 14(2).
  • 11. Dane United Nations, cytowane przez Rafała Molende, dyrektora działu stacji paliw i rozwoju sieci Shell Polska.
  • 12. Datta A., Hossain A., Roy S., An Overview on Biofuels and Their Advantages and Disad-vantages, ”Asian Journal of Chemistry” 2019, 31(8).
  • 13. Demirbas M.F., Biofuels from algae for sustainable development, ”Appl. Energy” 2011, 88(2011).
  • 14. Dismukes G.C., Carrieri D., Bennette N., Ananyev G.M., Posewitz M.C., Aquatic phototrophs:efficient alternatives to land-based crops for biofuels, ”Current Opin Biotechnology” 2008, 19(2008), s. 235-240.
  • 15. Dragone G., Fernandes B.D., Vincente A., Third generation biofuels from microalgae, Current research, technology and education topics in applied microbiology and microbial biotechnology, 2010, s. 1355-1366.
  • 16. Dubiński J., Wachowicz J., Koteras A. , Podziemnie składowanie dwutlenku węgla, możliwości wykorzystania technologii CCS w polskich uwarunkowaniach, ”Górnictwo i Geologia” 2010, 5(2010), s. 5-19.
  • 17. Flesch A., Beer T., Campbell P.K., Batten D., Grant T., Greenhouse gas balance and algae-based biodiesel, ”Algae for Biofuels and Energy” 2013, s. 233-254.
  • 18. Gama R., Dyk J.S.V., Burton M.H., Pletschke B. I., Using an artificial neural network to predict the optimal conditions for enzymatic hydrolysis of apple pomace, ”Biotech” 2017, 7(2), s. 1-10.
  • 19. Geng Y., The Circular Economy and Benefits for Society: Jobs and Skills in the Circular Economy, ”Journal of Cleaner Production” 2019.
  • 20. Ghamkhar K., Croser J., Aryamanesh N., Campbell M., Kon’kova N., Francis C., Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses, ”Genome” 2010, 53(7), s. 558-67.
  • 21. HanPark S., Cha J., Lee C.S., Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine, ”Applied Energy” 2021, 99(2021).
  • 22. Harasym J. Biorafinerie - systemy i przykłady realizacji w Europie, ”Przegląd Zbożowo - Młynarski” 2011, nr 4, s. 8-9.
  • 23. Heilmann S.M., Hydrothermal carbonization of microalgae, ”Biomass and Bioenergy” 2010, 34(6), s. 875-882.
  • 24. Horvath B., Bahna M., Fogarassy C., The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops, ”Sustainability” 2011, 11(10).
  • 25. IEA (International Energy Agency) Bioenergy Task 42.
  • 26. Jęczmionek Ł., Camelina oil (Camelina sativa) - a chance for the second generation bio-fuels expansion?, ”Nafta-Gaz” 2010, 66/9(2010).
  • 27. Jebali A., Acien G.F., Barradas E.R., Olguin E., Sayadi., Grima E.M., Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium, ”Bioresource Technology” 2018, 262(2018), s. 1-8.
  • 28. Jørgensen S., Pedersen L.J.T., The circular rather than the linear economy, ”Sustainable Business Model Innovation” 2018, s. 103-120.
  • 29. Kajaste R., Chemicals from biomass- managing greenhouse gas emissions in biorefinery production chains - A reveiew, ”Journal of Cleaner Production” 2014, 75(2014) , s. 1-10.
  • 30. Kamali M., Appels L., Yu X., Aminabhavi T.M., Dewil R., Artificial intelligence as a sustainable tool in wastewater treatment using membrane bioreactors, ”Chemical Engineering Journal” 2021, 417(2021), s. 1-15.
  • 31. Kamble S.S., Gunasekaran A., Gawankar S.A., Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications, ”International Journal of Production Economics” 2020, 219(2020), s. 179-194.
  • 32. Khan M.I., Shin J.H., Kim J.D., The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products, ”Microbial Cell Factories” 2018, 17(2018).
  • 33. Kozłowski J., Jak najlepiej wykorzystać lasy do sekwestracji dwutlenku węgla?, ”Nauka” 2019, nr 4(2019), s. 47-56.
  • 34. Kumar A., Ergas S., Yuan X., Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, ”Trends in Biotechnology” 2010, Vol. 28(2010), s. 371-380.
  • 35. Lam M.K., Lee K.T., Microalgae biofuels: A critical review of issues, problems and theway forward, ”Biotechnol Adv” 2012, 30(3), s. 673-90.
  • 36. Leong H.Y., Chang C., Khoo K.S., Chew K.W., Chia S.R., Lim J.W., Chang J., Show P.L., Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues, ”Biotechnology for Biofuels” 2021, 14(87).
  • 37. Liao M., Yao Y., Applications of artificial intelligence-based modeling for bioenergy systems: A review, ”GCB Bioenergy” 2021, 13(2021), s. 774-802.
  • 38. Lin C.Y., Lu C., Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review, ”Renewable and Sustainable Energy Reviews” 2021, 136(2021).
  • 39. Lü J., Sheahan C., Fu P., Metabolic engineering of algae for fourth generation biofuel production, ”Energy Environ. Sci” 2011, 4(2011), s. 2451.
  • 40. Maciejczak M., Hofreiter K., How to define bioeconomy, ”Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu 243 Roczniki Naukowe” 2013, tom XV, zeszyt 4.
  • 41. Maojidek J., Ranglova K., Lakatos G.E., Benavides A.M., Torzillo G., Variables Governin Photosynthesis and Growth in Microalgae Mass Cultures, „Processes” 2021, 9(5), s. 820.
  • 42. Maniscalco M.P., Volpe M., Messineo A., Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review, ”Energies” 2020, 13(16).
  • 43. Mata Teresa M., Martins A.A., Caetano N.S., Microalgae for biodiesel production and other applications: A review, ”Renewable and Sustainable Energy Reviews” 2010, 14(1), s. 217-232.
  • 44. Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M., Biodiesel production from oleaginous microorganisms, ”Renew Energy” 2009, 34(2009), s. 1-5.
  • 45. Meena M., Shubham S., Paritosh K., Pareek N., Vivekanand V., Production of biofuels from biomass: Predicting the energy employing artificial intelligence modeling, „Bioresource Technology” 2021, 340(2021).
  • 46. Nag A., Gerritsen A., Machine learning-based classification of lignocellulosic biomass from pyrolysis-molecular beam mass spectrometry data, ”International Journal of Molecular Sciences” 2021, 22(8).
  • 47. Olguín E.J., Galicia S., Mercado G., Pérez T.J., Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, ”J. Appl. Phycology” 2003, 15(2003), s. 249-257.
  • 48. Olguín E.J., Hernández B., Araus A., Camacho R., González R., Ramírez M.E., Galicia S., Mercado G., Simultaneous high-biomass protein-production and nutrient removal using Spirulina maxima in sea-water supplemented with anaerobic effluents, ”World J. Microbiol. Biotechnol” 1994, 10(1994), s. 576-578.
  • 49. Priefer C., Jorissen J., Fror O., Pathways to Shape the Bioeconomy, „Resources” 2017, 6(1), s. 10.
  • 50. Paris Agreement, 2015.
  • 51. Park S.H., Cha J., Lee C.S., Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine, ”Applied Energy” 2012, 99(2012), s. 334-343.
  • 52. Pitron G., Wojna o metale rzadkie, ukryte oblicze transformacji energetycznej, 2018.
  • 53. Plata P., Nowaczek A., The BioRen project in the context of the development of new generations of biofuels, ”Energy Policy Journal” 2023, 26(1), s. 77-92
  • 54. Fernandez C.G., Munoz R., Microalgae-Based Biofuels and Bioproducts From Feedstock Cultivation to End-products, „Energy” 2017, s. 67-91.
  • 55. Rahman A., Agrawal S., Nawaz T., Pan S., Selvaratnam., A Review of Algae-Based Produced Water Treatment for Biomass and Biofuel Production, ”Water” 2020, 12(9), s. 2351.
  • 56. Rakotovao M., Gobert, J., Brullot S., Developing a socio-economic framework for the assessment of rural biorefinery projects, Proceedings of the EUBCE Session 4AV.3.8, s. 1378-1389.
  • 57. Rashid N., Park W.K., Selvaratnam T., Binary culture of microalgae as an integrated approach forenhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation, ”Chemosphere” 2018, 194(2018), s. 67-75.
  • 58. Rathore A., Chopda V.R., Gomes J., Knowledge management in a waste-based biorefinery in the QbD paradigm, ”Bioresource Technology” 2015, 215(2016), s. 63-75.
  • 59. Sahoo K., Hawkins G.L., Yao X.A., Samples K., Mani S., GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US, ”Applied Energy” 2016, 18(2016).
  • 60. Schoenmakere M.D., Hoogeveen Y., Gillabel J., Manshoven S., Circular Economy and Bioeconomy: Partners in sustainabilityy”, EEA Report No 8/2018.
  • 61. Schröder T., Lauven L.P., Sowlati T., Geldermann J., Strategic planning of a multi-product wood-biorefinery production system, ”Journal of Cleaner Production” 2019, 211(2019), s. 1502-1516.
  • 62. Shroeader G., Messyasz B., Łęska B., Fabrowska J., Pikosz M., Rybak A., Biomass of freshwater algae as raw material for the industry and agriculture, ”Przemysł Chemiczny” 2013, 92(7), s. 1380-138.
  • 63. Al-Hemeri S.T., Lee J.G., Harvey A.P., Direct and rapid production of biodiesel from algae foamate using a homogeneous base catalyst as part of an intensified process, ”Energy Conversion and Management” 2022, 16(2022).
  • 64. Singh A., Olsen S.I., Nigam P., A viable technology to generate third-generation biofuel, ”Journal of Chemical Technology & Biotechnology” 2011, 86(11), s. 1349-1353.
  • 65. Singh D., Sharma D., Soni S.L., Inda C.S., Sharma S., Sharma P.K., Jhalani A., A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas, ”Fuel” 285(2021).
  • 66. Skjånes K., Rebours C., Lindblad P., Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, ”Crit Rev Biotechnol” 2013, nr 33(2013), s. 172-215.
  • 67. Subhadra B., Grinson G., Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world, ”Sci Food Agric” 2011, 91(1), s. 2-13.
  • 68. Tehreem M., Hussain N., Shahbaz A., Mulla S.I., Iqbal H.M., Bilal M., Sustainable production of biofuels from the algae-derived biomass, ”Bioprocess and Biosystems Engineering” 2023, 46(2023), s. 1077-1097.
  • 69. Tudge S.J., Purvis A., De Palma A., The impacts of biofuel crops on local biodiversity: a global synthesis, ”Biodiversity and Conservation” 2010, nr 30, s. 2863-2883.
  • 70. Ubando A.T., Felix C.B., Chen W.H, Biorefineries in circular bioeconomy: A comprehensive review, „Bioresource Technology” 2018, 299(2018).
  • 71. Vani S., Sukumaran R.K., Savithri S., Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling, ”Bioresource Technology” 2015, 188(2015).
  • 72. Wijffels R.H., Potential of sponges and microalgae for marine biotechnology, ”Trends Biotechnology” 2008, 26(1), s. 26-31.
  • 73. Zabed H., Sahu J.N Suely A., Boyce A.N., Faruq G., Bioethanol production from renewale sources: current perspectives and technological progress, ”Renewable and Sustainable Energy Reviews” 2017, 71(2017), s. 475-501.
  • 74. Zetterholm J., Bryngemark E., Ahlstrom J., Soderholm P., Harvey S., Wetterlund E., Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models, ”Sustainability” 2020, 12(17).
  • 75. Olguín E.J., Galicia S., Mercado G., Pérez T.J., Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions, ”J. Appl. Phycology” 2003, 15, s. 249-257.
  • 76. Via National Ocean Service/ NOAA.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-db721b3c-a34f-4e21-9e18-ec1878383a2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.