PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of probabilistic aspects reliability of isotropic bodies with internal defects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A study of the stress state and reliability of an isotropic body with the same material crack resistance and evenly distributed internal defects-cracks under the conditions of homogeneous axisymmetric loading is carried out. Defects are characterized by two independent random variables – a radius and orientation angle. The probability density distribution of the defect radius is chosen in the form of an exponential law. The probability density distribution of the defect orientation angle is chosen in the form of a law that corresponds to the material isotropy. The influence of the loading level, type of stress state and body size (number of defects) on the most probable value, the mean value and the dispersion of failure loading (strength) are investigated.
Rocznik
Strony
73--84
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine
Bibliografia
  • [1] Keles, Ö., Garcia, R., & Bowman, K. (2013). Stochastic failure of isotropic, brittle materials with uniform porosity. Acta Materialia, 61(8), 2853-2862. doi: 10.1016/j.actamat.2013.01.024.
  • [2] Heckmann, K., & Saifi, Q. (2016). Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools. Kerntechnik, 81(5), 484-497. doi: 10.3139/124.110725.
  • [3] Luo, W., & Bazant, Z. (2017). Fishnet statistics for probabilistic strength and scaling of nacreous imbricated lamellar materials. Journal of the Mechanics and Physics of Solids, 109, 264-287. doi: 10.1016/j.jmps.2017.07.023.
  • [4] Zhang, T., Yue, R., Wang, X., & Hao, Z. (2018). Failure probability analysis and design comparison of multi-layered sic-based fuel cladding in PWRs. Nuclear Engineering and Design, 330, 463-479. doi: 10.1016/j.nucengdes.2018.02.01.
  • [5] Zhu, S.P., Hao, Y.Z., & Liao, D. (2020). Probabilistic modeling and simulation of multiple surface crack propagation and coalescence. Applied Mathematical Modelling, 78, 383-398. doi: 10.1016/j.apm.2019.09.045.
  • [6] He, J., Cui, Y., Liu, Y., & Wang, H. (2020). Probabilistic analysis of crack growth in railway axles using a Gaussian process. Advances in Mechanical Engineering, 12(9), 168781402093603. doi: 10.1177/1687814020936031.
  • [7] Nejad, R.M., Liu, Z., Ma, W., & Berto, F. (2021). Fatigue reliability assessment of a pearlitic Grade 900A rail steel subjected to multiple cracks. Engineering Failure Analysis, 128, 105625. doi: 10.1016/j.engfailanal.2021.105625.
  • [8] Kvit, R. (2018). Strength statistical characteristics of the isotropic materials with disc-shaped defects. Journal of Applied Mathematics and Computational Mechanics, 17(4), 25-34. doi: 10.17512/jamcm.2018.4.04.
  • [9] Fisher, J., & Hollomon, J. (1947). A statistical theory of fracture. Metals Technology, 14(5), 1-16.
  • [10] Gupta, R.D. & Kundu, D. (2006). On the comparison of Fisher information of the Weibull and GE distributions. Journal of Statistical Planning and Inference, 136(9), 3130-3144. doi: 10.1016/j.jspi.2004.11.013.
  • [11] Bakoban, R., & Abu-Zinadah, H. (2017). The beta generalized inverted exponential distribution with real data applications. Statistical Journal, 15(1), 65-88. doi: 10.57805/revstat.v15i1.204.
  • [12] Vytvytsky, P., & Kvit, R. (1990). Probabilistic strength criteria for bodies with stochastically distributed disc-shaped cracks under an axisymmetric stress state. Physicochemical Mechanics of Materials, 3, 53-58 (in Ukrainian).
  • [13] Vytvytsky, P., & Popina, S. (1980). Strength and Criteria of Brittle Fracture of Stochastically Defective Bodies. Kyiv, 186 (in Russian).
  • [14] Luo, W., & Bazant, Z. (2019). Fishnet statistical size effect on strength of materials with nacreous microstructure. Journal of Applied Mechanics, 86(8), 081006. doi: 10.1115/1.4043663.
  • [15] Kvit, R. (2018). On the strength of isotropic materials with spatial stochastic distribution of defects. Precarpathian Bulletin of the Shevchenko Scientific Society, 1(45), 100-108 (in Ukrainian).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d81df208-894f-4ed0-bdb2-21d361d44f6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.