PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of flotation efficiency of phosphate minerals in mine tailings using polymeric depressants : experiments and machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, direct froth flotation experiments were conducted on silicate-rich phosphate tailing samples. The average grade of P2O5 in the flotation feed was 21.6% as determined using a combination of spectroscopic techniques including X-ray powder diffraction (XRD), mineral liberation analysis (MLA), and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Two polymers were selected to promote the depression of silicates and enhance the flotation of phosphates: in-house synthesized hybrid polyacrylamide (Hy-PAM) and chitosan. Flotation efficiency of phosphates was evaluated at different flotation conditions including depressant type, depressant dosage, pH, and the flotation time. Results indicated that the optimum flotation efficiency of phosphate minerals (84.6% recovery at 28.6% grade of P2O5) was obtained when Hy-PAM was utilized at the studied range of pH and flotation time. All datasets produced from the flotation experiments were integrated within the framework of machine learning (ML) using artificial neural networks (ANNs). The ANN platform was trained, validated, and successfully employed to predict the process outcomes in relation to the pulp and reagents characteristics, which in turn were used to determine the optimum values of process variables. Coefficient of determination (R2), mean absolute error (MAE), and root-mean-square error (RMSE) were used as model indicators. Optimization results showed that the peak flotation performance could be achieved at higher dosages of both polymers. However, lower pH and shorter flotation time for Hy-PAM, and higher pH and longer flotation time for chitosan, were predicted to give the optimum process efficiency.
Rocznik
Strony
art. no. 150477
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Department of Mining and Explosives Engineering, Missouri University of Science and Technology, MO65409, USA
  • Department of Natural Resources and Chemical Engineering, Tafila Technical University, Tafila, Jordan 66110
autor
  • Department of Mining and Explosives Engineering, Missouri University of Science and Technology, MO65409, USA
  • Thomas J. O'Keefe Institute for Sustainable Supply of Strategic Minerals, Rolla, MO, USA, 65409, USA
  • Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
  • Department of Computer Science, Missouri University of Science and Technology, Rolla, MO, USA
Bibliografia
  • ALTHYABAT, S. (2009). Empirical evaluation of the role of sodium silicate on the separation of silica from Jordanian siliceous phosphate. Separation and Purification Technology, 67 (3), 289-294.
  • ALTHYABAT, S. (2008). On the optimization of froth flotation by the use of an artificial neural network. Journal of China University of Mining and Technology, 18(3), 418–426.
  • AL-THYABAT, S., YOON, R.-H., SHIN, D. (2011). Floatability of fine phosphate in a batch column flotation cell. Mining, Metallurgy Exploration, 28(2), 110–116.
  • ALAGHA, L., WANG, S., XU, Z., MASLIYAH, J. (2011). Adsorption kinetics of a novel organic-inorganic hybrid polymer on silica and alumina studied by quartz crystal microbalance. Journal of Physical Chemistry C, 115(31), 15390–15402.
  • ALI, D., HAYAT, M. B., ALAGHA, L., MOLATLHEGI, O. K. (2018). An evaluation of machine learning and artificial intelligence models for predicting the flotation behavior of fine high-ash coal. Advanced Powder Technology, 29(12), 3493–3506.
  • ALSAFASFEH, A. (2020). Modeling and optimization of froth flotation of low-grade phosphate ores: experiments and machine learning, Ph.D. Dissertation, Missouri University of Science and Technology.
  • ALSAFASFEH, A., ALAGHA, L. (2017). Recovery of Phosphate Minerals from Plant Tailings Using Direct Froth Flotation. Minerals, 7(8), 145.
  • ALSAFASFEH, A., KHODAKARAMI, M., ALAGHA, L., MOATS, M., MOLATLHEGI, O. (2018). Selective depression of silicates in phosphate flotation using polyacrylamide-grafted nanoparticles. Minerals Engineering, 127, 198–207.
  • BINA, B., EBRAHIMI, A., HESAMI, F., AMIN, M. (2013). Arsenic removal by coagulation using ferric chloride and chitosan from water. International Journal of Environmental Health Engineering, 2(1), 17.
  • BOULOS, T. R., YEHIA, A., IBRAHIM, S. S., YASSIN, K. E. (2014). A modification in the flotation process of a calcareous-siliceous phosphorite that might improve the process economics. Minerals Engineering, 69, 97–101.
  • CHEN, H. T., RAVISHANKAR, S. A., FARINATO, R. S. (2003). Rational polymer design for solid-liquid separations in mineral processing applications. International Journal of Mineral Processing, 72(1–4), 75–86.
  • COOK, R., MONYAKE, K. C., HAYAT, M. B., KUMAR, A., ALAGHA, L. (2020). Prediction of flotation efficiency of metal sulfides using an original hybrid machine learning model. Engineering Reports, 2(6), e12167.
  • DONG, L., WEI, Q., JIAO, F., QIN, W. (2021). Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores. Journal of Cleaner Production, 282, 124532.
  • DOU, X., YANG, Y. (2018). Comprehensive Evaluation of Machine Learning Techniques for Estimating the Responses of Carbon Fluxes to Climatic Forces in Different Terrestrial Ecosystems. Atmosphere, 9(3), 83.
  • EL-SHALL, H., ZHANG, P., ABDEL KHALEK, N., EL-MOFTY, S. (2004). Beneficiation technology of phosphates: Challenges and solutions. Minerals and Metallurgical Processing, 21(1), 17–26.
  • FENG, B., PENG, J., ZHU, X., HUANG, W. (2017). The settling behavior of quartz using chitosan as flocculant. Journal of Materials Research and Technology, 6(1), 71–76.
  • FU, Y., YANG, B., MA, Y., SUN, Q., YAO, J., FU, W., YIN, W. (2020). Effect of particle size on magnesite flotation based on kinetic studies and machine learning simulation. Powder Technology, 376, 486–495.
  • GOUWS, F. S., ALDRICH, C. (1996). Rule-based characterization of industrial flotation processes with inductive techniques and genetic algorithms. Industrial and Engineering Chemistry Research, 35(11), 4119–4127.
  • HAO, J., HO, T.K. (2019). Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language. In Journal of Educational and Behavioral Statistics (Vol. 44, Issue 3, pp. 348–361). SAGE Publications Inc.
  • HART, W.E., WATSON, J.P., WOODRUFF, D.L. (2011). Pyomo: Modeling and solving mathematical programs in Python. Mathematical Programming Computation, 3(3), 219–260.
  • HAYAT, M. (2018). Mitigation of environmental hazards of sulfide mineral flotation with an insight into froth stability and flotation performance. Doctoral Dissertations. https://scholarsmine.mst.edu/doctoral_dissertations/2703
  • H. E. R. A. on ingredients, Products, E. household cleaning. (2005). Soluble Silicates. Human Environmental Risk Assessment on Ingredients of European Household Cleaning Products.
  • HOLMES, G. G., LISHMUND, S.R., OAKES, G.M., (1982). A review of industrial minerals and rocks in New South Wales.
  • JORJANI, E., MESROGHLI, S., CHELGANI, S. C. (2008). Prediction of operational parameters effect on coal flotation using artificial neural network. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 15(5), 528–533.
  • KAWATRA, S. KOMAR, AND J. T. C. (2013). Beneficiation of Phosphate Ore.
  • KHODAKARAMI, M., MOLATLHEGI, O., ALAGHA, L. (2019). Evaluation of Ash and Coal Response to Hybrid Polymeric Nanoparticles in Flotation Process: Data Analysis Using Self-Learning Neural Network. International Journal of Coal Preparation and Utilization, 39(4), 199–218.
  • KLIMPEL, R. (1995). The influence of frother structure on industrial coal flotation. https://www.osti.gov/biblio/110010
  • KUPKA, N., BABEL, B., RUDOLPH, M. (2020). The Potential Role of Colloidal Silica as a Depressant in Scheelite Flotation. Minerals, 10(144), 1-9.
  • KYZAS, G. Z., MATIS, K. A. (2019). The flotation process can go green. In Processes (Vol. 7, Issue 3). MDPI AG.
  • LIU, J. C., WARMADEWANTHI, CHANG, C. J. (2009). Precipitation flotation of phosphate from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1–3), 215–219.
  • LIU, X., ZHANG, Y., LIU, T., CAI, Z., CHEN, T., SUN, K. (2016). Beneficiation of a sedimentary phosphate ore by a combination of spiral gravity and direct-reverse flotation. Minerals, 6(2).
  • MILLER, J. D. (2001). Improved phosphate flotation with nonionic polymers. In Florida Institute of Phosphate Research.
  • MOLATLHEGI, O., KHATIBI, S., ALAGHA, L. (2015). Studies on the role of organic/inorganic polyacrylamides in fine coal flotation. 2015 SME Annual Conference and Expo and CMA 117th National Western Mining Conference - Mining: Navigating the Global Waters.
  • MOLATLHEGI, ONTLAMETSE, ALAGHA, L. (2016). Ash Depression in Fine Coal Flotation Using a Novel Polymer Aid. International Journal of Clean Coal and Energy, 5, 65–85.
  • NAGARAJ, D. R., ROTHENBERG, A. S., LIPP, D. W., PANZER, H. P. (1987). Low molecular weight polyacrylamide-based polymers as modifiers in phosphate beneficiation. International Journal of Mineral Processing, 20(3–4), 291–308.
  • NANTHAKUMAR, B., GRIMM, D., PAWLIK, M. (2009). Anionic flotation of high-iron phosphate ores-Control of process water chemistry and depression of iron minerals by starch and guar gum. International Journal of Mineral Processing, 92(1–2), 49–57.
  • OLIVEIRA, M. S., SANTANA, R. C., Ataíde, C. H., Barrozo, M. A. S. (2011). Recovery of apatite from flotation tailings. Separation and Purification Technology, 79(1), 79–84.
  • PELEKA, E. N., MAVROS, P. P., Zamboulis, D., Matis, K. A. (2006). Removal of phosphates from water by a hybrid flotation-membrane filtration cell. Desalination, 198(1–3), 198–207.
  • QI, G. W., KLAUBER, C., Warren, L. J. (1993). Mechanism of action of sodium silicate in the flotation of apatite from hematite. International Journal of Mineral processing, 39(3-4), 251-273.
  • R. PETER KING. (2012). Modeling and Simulation of Mineral Processing Systems.
  • SANTANA, R. C., FARNESE, A. C. C. C., FORTES, M. C. B. B., ATAÍDE, C. H., BARROZO, M. A. S. S. (2008). Influence of particle size and reagent dosage on the performance of apatite flotation. Separation and Purification Technology, 64(1), 8–15.
  • SCHATZ, C., VITON, C., DELAIR, T., PICHOT, C., DOMARD, A. (2003). Typical physicochemical behaviors of chitosan in aqueous solution. Biomacromolecules, 4(3), 641–648.
  • SINGH, D., SINGH, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524.
  • SIS, H., CHANDER, S. (2003). Reagents used in the flotation of phosphate ores: A critical review. Minerals Engineering, 16(7), 577–585.
  • SODIUM SILICATE - National Library of Medicine HSDB Database. (2019). https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+5028
  • TIRAFERRI, A., MARONI, P., CARO RODRÍGUEZ, D., BORKOVEC, M. (2014). Mechanism of chitosan adsorption on silica from aqueous solutions. Langmuir, 30(17), 4980–4988.
  • UL HAQ, I., GONDAL, I., VAMPLEW, P., BROWN, S. (2019). Categorical features transformation with compact one-hot encoder for fraud detection in distributed environment. Communications in Computer and Information Science, 996, 69–80.
  • VAN DOKKUM, H. P., HULSKOTTE, J. H. J., KRAMER, K. J. M., WILMOT, J. (2004). Emission, Fate and Effects of Soluble Silicates (Waterglass) in the Aquatic Environment. Environmental Science and Technology, 38(2), 515–521.
  • ZEMMOURI, H., DROUICHE, M., SAYEH, A., LOUNICI, H., MAMERI, N. (2012). Coagulation flocculation test of Keddara’s water dam using chitosan and sulfate aluminium. Procedia Engineering, 33, 254–260.
  • ZHANG, L. (2013). Enhanced phosphate flotation using novel depressants. Theses and Dissertations--Mining Engineering. http://uknowledge.uky.edu/mng_etds/10
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6e02197-0e5b-4693-9799-86a1697b4d82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.